
'AD-Ai38 892 DISTRIBUTED DATABASE CONTROL AND ALLOCATION VOLUME 2 1/2
PERFORMANCE ANALYSIS..(U) COMPUTER CORP OF AMERICA
CAMBRIDGE MR N K LIN ET AL. OCT 83

UNCLASSIFIED RRDC-TR- 83-226-VOL-2 F 3682-Si-C-82 8 F/G 9/2 NLI ommhEEo hEEl
EohmhmhohhhEEE
EEEEEmhohEohEImlhhEEEEEElhEI

mEEEEEllhhEEEE
EEIIIIIIIIIII

'V.0

11111 1.112.0

11111U

1.25 ~jJ~i LA 1.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A,

5' 5.

% . .

%4 5S

%;a

ElAf: ,

RADC-TR-83-226, Vol II (of three)
:inal Technical Report

October 1983

x: o DISTRIBUTED DATABASE CONTROL
col AND ALLOCAIION Peformance Analysis

of Concurrency Control Algorithms

Computer Corporation of America

Wente K. Lin, Philip A. Bernstein, Nathan Goodman and Jerry Nolte

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

.4 t :r r.

n M. R 12 1 ,4

ROME AIR DEVELOPMENT CENTE
Air Force Systems Command A

... Griffiss Air Force Base, NY 13441
-W.

84 03 IZ 004

'KV

This report has been reviewed by the RADC Public Affairs Office (PA) an
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign na~ions.

RADC-TR-83-226, Vol II (of three) has been reviewed and is approved for
publication.

APPROVED:- . ~ A

EMILIE J. SIARKIEWICZ
Project Engineer

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF
Chief, Command and Control Division

FOR THE COMMANDER:

DONALD A. BRANTINGHAM
Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COTD) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

W%

UNCLASSIFIED

SECURITY CLASSFICATION OF THIS PAGE (Whsen Dsttfteaar_________________

REPOT DCUMNTATON AGEREAD INSTRUCTIONSREPOT DO MENTTIONPAGEBEFORE COMPLETING FORM
1. REPORT NUMBER 2.GOVT ACCESSION NO, S. RECIPIENT*$ CATALOG NUMBER

RADC-TR-83-226. Vol II (of threel"A t)4135 09a"________
* 4. TITLE (ind &Abatfo) S. TYPE OF REPORT A PERIOD COVERED

DISTRIBUTED DATABASE CONTROL AND ALLOCATION Final91 Tec na Repor
Performance Analysis of Concurrency Control Ja 191-an98

$- PERFORMING 010. REPORT NUMBER
Almgori~thms N/A
7. AUTNORrs) S. CONTRACT OR GRANT NUMBER(*)

Wente K. Lin Nathan Goodman

*Philip A. Bernstein Jerry Nolte F30602-81-C-0028
S. PERFORMING ORGANIZATION NAME AND ADDRESS SO. PROGRAM ELEMENT. PROJECT, TASK

AREA A WORK UNIT NUMBERS
Computer Corporation of America 672
Four Cambridge Center 55812121
Cambridge NA 02142 _____________

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

October 1983
Rome Air Development Center (COTD) IS. NUMBER OF PAGES
Griffiss APE NY 1344112

*14. MONITORING AGENCY N6AMS ADDRESiOI diftfen Item Controling Office) IS. SECURITY CLASS. (of this report)

Same UNCLASSIFIED
1S.. ffCI.ASSI FICATION/ DOWNGRAING

N/A~~ DL

16. DISTRIBUTION STATEMENT (o 'e1 Re. .. e,

*Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of he obee entered Aees 30. it 400m bo Ropowr)

* Same

IS. SUPPLEMENTARY NOTES

RADC Project Engineer: Emilie J. Siarkiewicz (COTD)

IS. Kay WORDS (Centhwe an toum.. aide it neooey uod fdmto&~ by wlek ama)

Distributed Databases
* Concurrency Control
* Reliability

20. ABSTRACT (CoUfhl. on revers Wo It noessavy mnd Idgetf by block munbo)

- This is the second of three volumes of the final technical report for the
project 'Distributed Database Control and Allocation." The first volume
describes frameworks for understanding concurrency control and recovery
algorithms. This volume describes work on the performance analysis of
concurrency control algorithms. The third volume summarizes the results
in the form of a distributed ditabase designer's handbook.

This volume is a collection of five Dapers written during the course of th
D I " 1473 EDITION OFl I NOV 6S IS OUSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When, Does Entered)

UNCLASSIFIED
SIECURITY CLASSIFICATION OF THIS PAOI(Whm Data Enesv4

project, each paper analyzing from a different perspective the results of
the performance study. The first paper presents a study that analyzes the
relationship between the performance of the two phase locking algorithm
and the following system parameters: access distribution of the database,
data granularity, transaction size and multiprogramming level. In a dis-
tributed database system, communication delay is also a major factor affec-
ing the performance of a concurrency control algorithm, and the second
paper presents an analysis of the relationship between the performance of
the two phase locking algorithm and the communication delay. Another
important factor that affects the performance of a concurrency control
algorithm is the number of read-only transactions relative to the number o
write transactions -- ratio of read-only to write transactions. The third

- paper presents an analysis of the relationship between the performance of
the two phase locking algorithm and their ratio.

The fourth paper extends the analysis to algorithms based on timestamps by
presenting a comparison of the performance of three distributed concurrenccontrol algorithms -- the Basic Timestamp, Multiple Version Timestamp, and

two phase locking algorithm.
The fifth paper analyzes the two phase locking algorithm in more detail

ft-. and refine the algorithm into nine algorithms. In addition, the previous
two timestamp algorithms are reevaluated in more detail and analyze a new
tlimestamp based algorithm -- the Dynamic Timestamp algorithm. Then the
performance of the twelve algorithms is compared.

-- ftM E4'-

.,ft-

f.. .

4

* C.

. ' ~~SECURITY CL.ASSilFICmTIoU OP
r

Pf.."iAOE(IP, m Smia En..

ft. ,f.t'. :,ft', , . . .- , . .. ,. : f,. f . . -.. f ft ft.ft....,f f f,:.-. f.t...:.. .,....- ,*.:., ft-.. ..-..-. -- .:. ..

CONTENTSj

Page

I. Introduction1

II. Performance of Two-Phase Locking 2

III. Communication Delay and Two-Phase Locking 24

IV. Read Only Transactions and Two-Phase Locking 41

V. Basic T3.mestamp, MutpeVersion Tietap
and Two-Phase Locking 53

VI. Performance of Distributed Concurrency Control 79

VII. Conclusion 104

Appendix A 108

Accession For

NTIS @**.AI
DTIC TABF

Una'nounced

U.1ur~mt on

/ v: 1ibitY Codes '

AIv3 I -d (

** *%

o-U- - w ~ '' J * • " v " o

-. A7.

-, ~ IMTODUCT ION

This is the second volume of the final technical report for the

project "Distributed Database Control and Allocation," sponsored by Rome

Air Development Center, contract number F30602-81-C0028. This volume

describes work on the perf ormance analysis of concurrency control algo-

rithms.

This volume is a collection of papers written during the course of

the project, each paper analyzing from a different perspective the

V, results of the performance study. It consists of five sections. Sec- -

tion I presents a study that analytes the relationship between the per-

formance of the two phase locking algorithm and the following system

• ° o.. "

parameters: access distribution of the database, data granularity, tran-
section size and multiprogramming level. In a distributed database eye-

tam, communication delay is also a major factor affecting the pert or-

sauce of a concurrency control algorithm, and we present in Section II

an analysis of the relationship between the performance of the two phase

locking algorithm and the communication delay. Another important factor

that affects the performance of a concurrency control algorithm is the

number of read-only transactions relative to the number of write tran-

sactions - ratio of read-only to write transactions. In Section III we

present an analysis of the relationship between the performance of the

two phase locking algorithm and their ratio. b

Section IV extends the analysis to algorithms based on timestamps

by presenting a comparison of the performance of three distributed con-

currency control algorithms - the Basic Timestamp, Multiple Version

Timestamp, and two phase locking algorithm.

In Section V we analyze the two phase locking algorithm in more

detail and refine the algorithm into nine algorithms. In addition, we

reevaluate the previous two timestamp algorithms in more detail and

analyze a new timestamp based algorithm - the Dynamic Timestamp algo-

riths. Ws then compare the performance of the twelve algorithms.

7 . ->--

, '-.' -2- --

,, ;, ."7- -V

PERFORMANCE OF TWO PRASE LOCKING*

Wente K. Liu

Jerry Nolte

b"'

• .'.

,. ,,-ob e'
"". "

-' .a.

AI E..

.- ,,, ";'.

* -ta,

,... ' -

~e.

:.4:" ,:.,x2

..- ,..,,.,,... ,-. 4.-,~~~~ ~~~~~~~~~~~~~~~...-....... ..-. ,-.........,..-.... ,..........-.4.. ., .,.,.. , .. ,,-, ,

V-. -IN 77 -

-3-

2. Performance of Two Phase Locking

Abstract

Simulation and analytical modeling of the two phase locking in a
DBS is the subject of this study. It is only parg of a larger project
tht is. studying the performanqes of various concurrency control and
reliability algorithms in a distributed DBMS. In the simulation model,
the application environment is characterized by the transaction size .
the number of lockable units requested by each transaction - and the
"yste environqent by the number of transa t ons runni a qoncurrently
.multiprogramm.in level), total number ot lockable units in the data-
base, and the distribution of acc *ees to these lockable units. These
environts are varied for different sinulation runs. Output from
these simulation runs includes the probabilities of a lock request
involved in a conflict and deadlock respectiyely (P ad PD), and the
average waiting delay (T) and its standar deviation DV) of a blocked
lock request. The results show that the system behaves quite similarly
for different access distributions - P, PC PD WT, and DV all increase
more than linearly with the multiprogramming level and the transaction
size; the increase of PC is faster with multiprorming level than with
the transaction size, and the reverse is true for PD. T, and DV.
Regression analysis on the simulation results reveals interesting rela-
tionships between the granularity of the lockable units and PC, PD, and
WT. Because st the assumption of fixed delay (excluding blocking due to
lock conflict) between two consecutive lock requests by a transaction,
the resqlts apply to a cqntralized DBMS wtth .ittle 10 del4y variation,
and a distrinte DBMS with little communication delay variation.

.-..

L+-% . . , . , -+ . - -p .

• ii + -il- I - '° '- ,l Iei . '=',, b I + • - ow • l . . . , +. ° . l . +* •. -.. .

["4'.,'. . " -" i ,' , " " ', " " - '" - ' " " "' "+, . "" '' ' '- ' ' " '" " ''' ' ' ' " , " " ", . + -, + ' + " '" ' ' '

. .. ,+ ., , ,,, .,..,.,.< ,. ..+. , ..,..,, , . -.,-..,,. , + ,.',.. 4

. .

;- -4-""

2.1 Introduction

In the two phase locking protocol as described in Gray [1], during

the first phase transactions accusmulate locks incrementally, acquiring a
each lock as its need arises, and during the second phase, release each

lock as soon as its need ends. But to spare the end users the responsi-
bility of requesting and releasing locks, most DBMSs implement implicit

locking. The DBMSs request and release the locks automatically when the

transactions request the data items and when the transactions end,

respectively. Because a DBMS, not knowing enough of the syntax and

semantics of the transactions, is ignorant of the time when each data

item is no longer needed, it can only release the locks held by a tran-

saction when the transaction ends.. Besides, if locks held by a transac-

tion are released before the transaction ends, then the abortion of the

transaction causes roll-backs of all other transactions that have read

data released by the aborted transaction. To avoid the problems dis-

cussed above, most DBMS release locks held by a transaction when the

transaction ends. The performance of this modified two-phase locking is

the subject of this study.

In this study we use several measures of system performance. We

emphasize the blocking and restart behavior of transactions. We concen-

trate on the basic underlying factors of conflict, deadlock, and wait

"$ duration. The performance variables are listed as follows:

1. the average probability of a lock request conflicting with another
one;

2. the average probability of a lock request causing a deadlock;

3. the average waiting delay of a conflicting lock request;

4 4. and the standard deviation of this delay.

Besides locking protocol, the performance of a DBMS depends on several

system and application parameters:

1. the verage number of locks requested by a transaction (transaction
si.zeiv;

" 2. the maximum number of transactions running concurrently (the mul-
*. p tiprogramming level);

3. the eize of the group that is the unit of locking (lockable unit

size);
4. the size of the database (total number of lockable units);

5. and the distribution of lock requests to the lockable units of the
database.

% N

- . .-.-.---- ,---.- --.-.- -

-5-

Two distributions of lock requests to the lockable units are simu-

lated. The random access model assumes that all lockable units have the

same probability of being accessed by a lock request. The 20/80 model

assumes that 20Z of the database is accessed 80Z of the time.

Using simulation and statistical data analysis techniques, this

paper studies the relationships between the performance of a DBMS and

* those system and application parameters affecting it.

A fev researchers have attempted similar studies. In Lin [2], the

same approach taken in this study was used to evaluate two timestamping

protocols, but its results could not be extended to the two-phase lock-

ing protocol. In Naka [31, the result confirmed that concurrent updat-

ing of the database by transactions'degrades the performance of a DBMS.

In Spit [4], the two phase locking and the modified version (described

above) were found to perform equally vell in systm-2000. In Hun [5],

deadlock resolution methods were studied, and three were found to be

superior: restarting the smallest, the one holding the least locks, and

the one having consumed the least cpu time. In addition, it was found

that simultaneous reduction of the sizes of the lockable unit and the

transaction improves the performance. But the oversimplified definition

of performance as the cpu utilization made the results less useful. In

lies [61, the scope and the objective of its simulation were much more

ambitious than the previous three. Nevertheless, it emphasized the

effects of the size of the lockable unit on the performance of the DBMS,

which was defined as the cpu and 10 utilizations, plus in some cases the

response time and the system through-put. The main model required tran-

sactions to obtain all the required locks before they started, and the

request-as-needed model was only briefly studied. It had many interest-

ing results showing how the size of the lockable unit interacts with the

system and application parameters to effect the performance. But its

assumption that the multiprogramming level has no affect on performance

is contradicted by this study. Also, performance was not related to

system and application parameters as precisely and quantitatively as in

the present study.

This study expands on Lin [2] and Ries [4], and presents the

results in the same precise form as that of Lin [21. The second subsec-

- - -- "

'- . •
-G-'. -6-

tion discusses the simulation model; the third subsection presents and

analyzes the results of the random access model; the fourth subsection

.2. presents and summarizes the results of the 20/80 model; and the fifth

subsection summarizes the results of this study.

2.2 Simulation Model

A complete description of a simulatio' model for a DBMS must

include the database, the transactions, - ,mputer system, and the

output parameters.

The database consists of DZ (Database siZe) lockable units of equal

size. The size of each lockable unit is irrelevant to our model. The

database size DZ varies among different simulation runs.

We simulate two different access distributions to the database: the

random access model in which all lockable units are equally likely to be

accessed, and the 20/80 access model in which 20% of the database is

accessed 80% of the time.
J%"_ ... -

All transactions request only exclusive locks. Within each simula-

tion run, all transactions request the same number TZ (Transaction siZe)

of lockable units, but TZ varies among different simulation runs. Each

transaction requests its lockable units sequentially, but different

transactions request lockable units asynchronously. When a transaction

requests for a lockable unit, a random number is drawn to select one

among all the lockable units in the database except those held by the

requesting transaction; thus a transaction never requests the same lock-

able unit more than once. If the drawn lockable unit is locked by "

another transaction, the requesting transaction is queued at the end of

a FIFO queue. Otherwise, it sets a lock on the drawn lockable unit and

waits one time unit before requesting another lockable unit. Since pro-
ceasing a lock request is assumed to be instantaneous, the simulation

timer is advanced one unit only after all outstanding lock requests have

been processed. The assumption that a transaction waits a unit of time

(after obtaining a lockable unit) before requesting another one, implies

that it takes one time unit to retrieve a lockable unit from the data-

base, to wait for the cpu, and to process it. Each transaction releases

-a',.%°

.... .. : :, -, - , .,,'-. ? -. . -..., ;., .. . i. - .. - .- .: .; .,'. ?*. . .

-7-

all its lockable units after its completion or abortion.

We model the computer system at a high functional leyvi1. Tie Cpu,

10 devices, and other hardware components are invisible -n the simula-

%"" tion model; their existence is implied by the processing tim required

for each lockable unit discussed previously. The system is a closed

multiprogramming system, i.e., the number of transactions running con-

currently remains at a constant level MP (MultiProgramming level); a new

transaction starts as soon as one completes or aborts. Nonetheless MP

varies among different simulation runs. A lock request conflicts if it

requests a lockable unit already held by another transaction. The sys-

'.- tem maintains a lock with a FIFO queue for each lockable unit and places

conflicting lock requests into the-queue. It checks for deadlocks as

soon as a lock request conflicts. If it detects a deadlock, the tran-

saction of the conflicting lock request aborts and reutarts imediately;

it restarts with a new randomly dr-wn sequence of lock requests. Check-

ings of conflicts and deadlocks are instantaneous.

For each simulation run, the output includes the fraction of con-

flicting lock requests (which is the same as the probability of a lock

request conflicting with another lock request PC), the fraction of con-

flicting lock requests causing deadlocks (which is the same as the pro-

bability of a lock request causing a deadlock PD), and the average wait-

ing of a blocked lock request (WT) and its standard deviation (DV).

2.3 Simulation Results of the Random Access Model

Sixty four simulations were run for 4 values of multiprogramming

level NOP, transaction size (TZ), and database size (DZ) each. The

results are presented and analyzed in this subsection in the following

order: PC, PD, liT, and DV. The analysis consists of three steps: visual

inspection, regression analysis, and examination of the regression equa-

tions.

The results of PC are presented in Figure 2.1. The figure shows

that for a fixed DZ, PC increases with both MP and TZ, and the increase

is larger with MP than with TZ. This behavior is explained by the fol-

lowing observation during the simulation runs: the number of

ft f ft ft f ft ft* ft -t .~ *f *- *ft *ft .ft ft. t. t. ft - ft t ft ftl obf

-8-

transactions deadlocked increases faster with the transaction size than

with 'the multiprogrming level. Since a deadlocked transaction aborts

and releases all held locks as soon as the deadlock occurs, the total

number of locks outstanding (not released) increases slower with the

transaction size than with the multiprogramming level.

If a diagonal line is drawn from the top left to the bottom right 0

of each table in the figure, each number below the line is always larger

than the opposite number across the line. Assuming DZ is fixed, two

elements across the diagonal line represent the same load (L) defined as

the product of MP and TZ divided by DZ. For example, a system with 16

transactions, each requesting 7 locks, imposes the same load (112 lock-

able units) on the database as a. system with 7 transactions, each

requesting 16 locks. This line shows that with the same load, the sys-

tem with higher multiprogramming level has higher probability of con-

flict than the system with higher transaction size. This behavior is

explained by the following observation during the simulation runs.

Assuming the load L and the database size DZ are fixed, then on the

average, a larger 1P with smaller TZ implies less deadlocks and more

locks outstanding. Since each lockable unit has the same probability of

being accessed, more outstanding locks means higher probability of con-

flict. But higher probability of conflict does not necessarily means

longer response time, because smaller transaction size causes conflict-

ing requests to wait less and to deadlock less, as will be shown.

The differences across the diagonal line diminish as the database

size DZ increases - that is, the probability of conflict (PC) is

approximately proportional to the load L when the load on the database

is light, because increasing the database size without increasing the

multiprogramming level or the transaction size is equivalent to decreas-

ing the load on the database.

We applied regression analysis to the data in Figure 2.1, and found

equation (2.1) a good fit. The residuals -- the differences between the '

actual values and the values predicted by the equation -- are within

2.5% of- the actual values. We did a few simulation runs with larger

values of DZ, MP, and TZ, and found that the equation is still a good

fit for DZ of up to 12384, MP of up to 128, and TZ of up to 32; but we

% ...

.

-9-

found that when the transaction size TZ gets much larger than 32, the

equation under-estimates the probability of conflict (PC) substantially.

PC(21J

-..- ,,+T.,.,,

L '-

Next, we use the regression equation to examine the relationship

between the size of the lockable unit and the probability of conflict.

If we split each lockable unit into k smaller units, then the data-

base size increases to k times its original size. Because of the

. smaller lockable units, a transaction must request more lockable units;

thus the transaction size increases to w (l._<k) times its original

size. The value of w depends on how well the database is placed before

the split. If the database is originally well placed, then all the data

items contained in the original TZ lockable units are wanted by the

transaction - no frivolous data itemas are retrieved. In this case,

-] when a lockable unit is split into k smaller ones, the transaction size

increases to k times its original size (wik). Otherwise, if the data-

base is badly placed before the split, then the lockable units retrieved

by a transaction contain a lot of unwanted data items. Thus, after the

split, a transaction may request the same number of lockable units and

still obtain all the data items it needs (v1). In most cases, hovever,

w will be larger than one and smaller than k.

Replacing DZ and TZ by kDZ and wTZ, equation (2.1) becomes equation
'/':. (2.2), -'-

PC' t x PC (2.2)
where

DZ0 2L TZO0.l 3 Lr w1-(.l3Lw)/k
t- (2.2a)

and
r " (k-w)Ik.

Setting w to k, equation (2.2a) becomes (2.2b).

*4 *4 * . *io*

,-. .. ,, . , ,, '*'. -. , . . 4.. . 4.. , " 4. .. .44 .* .; 4... " . : . " , . .4 . . , .

-10-

I

t - -xr (2.2b)

Since k is larger than one, t is smaller than one. Thus smiler lock-

able units imply a smaller probability of conflict whenever the database
is well placed. But as we will show later, smaller probability of con-

flict with larger transaction size may result in a higher probability of
..

.-* 4 deadlock and longer transaction response time. As L approaches zero,

i.e., the load is light, t approximates one, and the difference between

PC and PC' becomes insignificant.

- Setting w to one in equation (2.2a) results in equation (2.2c).

DZO.28Lr TZO.13Lr

t m- (2.2c)

where

r - (k-l)Ik

and

-'* t 1 1/k as L approaches zero.

. Equation (2.2c) shows that when the load L is smaller than 1002, which

is within our simulation range and is realistic, t is less than one.

Therefore, if the database is badly placed, smaller lockable units imply

a smaller probability of conflict. In this case, since the transaction

size remains the same, a smaller probability of conflict does imply a

smaller probability of deadlock and shorter response time.

To sum up, smaller lockable units always imply smaller probability

of conflict.

The probabilities of deadlock (PD) are presented in Figure 2.2.

Notice that PD is the conditional probability of a lock request causing

a deadlock, given that the request conflicts. The unconditional proba-

.... bility of deadlock is the product of PC and PD, which is presented in

. -Figure 2.3. These data are also analyzed in three steps: visual inspec-
" .. tion, regression analysis, and analysis of the regression equation.

Ur Figure 2.3 shows that for a fixed DZ, PD increases with both the

multiprogramming level NP and the transaction size TZ. But in contrast -A,
to PC, the increase is larger with TZ than with MP.

% o. %.

If the diagonal line discussed previously is drawn for caLh table

in Figure 2.3, the number below the line is always smaller C:an the

corresponding number across the line, in sharp contrast tI. t if Figure

2.1. Thus assuming equal loads L, a system with larger tranbactions and

lower mualtiprogramiming level has a higher probability of deadlock than a

.4. system with shorter transactions and higher multiprogramming level.

Similarly, regression analysis shows equation (2.3) a good fit for

the data of Figure 2.3.

0012(411).07-0.24L TZ3.6 1-3 .48
PD - PDxPC ---------- Z -T 7 L(2.3)

HP xTZ

DZ

We must emphasize that PD is the probability of deadlock for a lock

request, not a transaction. Equation (2.3) shows that when the load L

is larger than 80%, the coefficient c is smaller than the coefficient b.

Therefore, for a fixed load of 802 or greater, a system with shorter

transactions and higher ultiprogramming level has a higher probability

of deadlock than a system with longer transactions and lower multipro-

graming level. This rather surprising behavior is not immediately
apparent from inspection of Figure 2.3. This behavior occurs because

when the load is high and transactions are long, transactions deadlock

and abort frequently; and abortions of long transactions means that more

.9...locks are freed. Thus there is less probability of a lock request caus-

ing a deadlock.

To analyze the relationship between PD and the lockable unit size,

we replace DZ by kDZ and TZ by wTZ, and equation (2.3) becomes equation

PD" t x PD' (2.4) 9

where

.94 ~(,fl11)O.54Lr TZ
3.7Lr w3.5(3lwI

t ------~~:F2;r;7 (2.4a)
9*99k

and

r (1-w/k)

Setting w to k, equation (2.4a) becomes (2.4b), wbic.b shows that if and

z:*

* - .°* f t t -ott t j .* 4 S -

-12-

only if the load L is less than one, which is within the range of our

simulation and is realistic, t is greater than one. .

t w k (2.4b)

Thus, when the database is well placed, smaller lockable units imply a

larger probability of deadlock. .

Setting w to I for the originally badly placed system, equation

(2.4a) becomes (2.4c), which shows that, within the range of our simula-

tion, t is less than one. Therefore smaller lockable units reduce the

probability of deadlock.

In sumary, larger lockable units in a well placed system and

smaller lockable units in a badly placed system reduce the probability

of deadlock for lock requests and transactions.

(1 .(HP-1)0.54Lr TZ
3.7Lr

t - ~2ILI~t2L77E(2.4c)

where
am Ir (1-1/lk).•
r r

;' Jt" ..

The average waiting times of a conflicting lock request are shown

in Figure 2.4, which shows that the average waiting of a conflicting

lock request increases with the multiprogramming level and the transac-

ft.. ft tion size, and the increase is larger with the transaction size than

. with the multiprogramming level. The result is consistent with our

intuition, because a lock request blocked by a long transaction must

wait until the long transaction completes or aborts; and it takes longer

for a long transaction to complete or abort. Also, if a similar diago-

nal line is drawn for each table, the number above the line is always

larger than the corresponding number across the diagonal line.

.. _. Regression analysis shows equation (2.5) a good fit for the data of

Figure 2.4.

-"0O19(1P 1)3.4(L
+ 0.2)2 - 0 .3 2 7(L+0.15)2+0.8WT%, - - - - -- - - 2 5

Assuming the database is well placed, to reduce the granularity of the

lockable units to lk of its original size, we increase the database

......... ,.-... ...- ,.....N.......... .. .

-13-

size DZ and transaction size TZ to kDZ and kTZ respectively in equation

(2.5). resulting in equation (2.6a). Equation (2.6a) shows that when

the load L is less than 1.4. which is realistic and within the range of

our simlations, smaller lockable units imply longer waiting for a con-

flicting lock request. The result is consistent with the earlier obser-

vation - longer transactions induce longer waiting.

VT = k1 "2 5 - 3 7 (L - 4 1) (2.6a)

Assuming the database is badly placed, to reduce the granularity of

the lockable units to I/k of its original size we increase the database

size DZ to kDZ, but leave the transaction size TZ unchanged in equation

(2.5), resulting in equation (2.6b). Equation (2.6b) shows that when

the load is light and k is small, t is greater than one - longer wait-

ing for a conflicting lock request. As shown earlier this is because

when a database is badly placed and the load is light, reducing the size

of the lockable units reduces the probability of deadlock. With less

deadlocks, more transactions complete and less transactions abort.

Since a transaction takes longer to complete than to abort, a blocked

lock request waits longer.

VT - DZ4 .1rL(qL-O.08) (2.6b)

where

In sumary, whether the database is well placed or badly placed, -.

r~ - -l _.-

smiller lockable units increase waiting delay for a blocked lock " -

request, except when load is extremely heavy, the database is badly , :

placed, and the reduction in lockable unit size is large. ..

We next examined the standard deviation of waiting delays. These...

*results can be summarized very simply. : .

,~~egression on the data of Figure 2.5 results in equation 2.7, which I!'
"": bt ishoshv that the waiting delay may be approxiated by an Erlangian distri--. :,,

- %~. .

.,, ,.. ,. -. - .. I.
. -, .Ps. - - ,. - " - - " "" ' "-

•~ ~ ~ ~ I sumary whehe the datbas "-is,','.- "'_-.. .-."',"",,.-.,..-,-:...-"-,-wl,' placed;-. --r bal placed;-.-_.5-' ,"....-''''-.'.-

I...-j

-14-

' DV 0.86 x WT (2.7)

DZ -256 DZ -1025

"": IQ/TZ 7 10 12 16 I/TZ 7 10 12 16

7 .077 .104 .118 .135 7 .020 029 034 .04%
10 .113 .145 .159 .176 10 :030 :043 :050 :.064
12 135 .169 .182 .198 12 .037 052 .061 07
16 .174 .210 .224 .236 16 .050 .069 .081 .09'

DZ - 512 DZ - 2048

MP/TZ 7 10 12 16 IP/TZ 7 10 12 16

7 .040 .056 .066 .081 7 .010 .015 .017 .023
10 .059 .081 .094 .112 10 .015 .022 .026 .034
12 .072 .097 .111 .130 12 .019 .026 .031 .041
16 .096 .127 .142 .160 16 .025 .036 .043 .055

. PC : Probability of a Lock Request conflicting
With Another Lock Request

Figure 2.1

DZ - 256 DZ - 1024 -

MP/TZ 7 10 12 16 PI/TZ 7 10 12 16 b

7- .031 .078 .112 .183 7 .006 .014 .026 .050
10 039 .102 .143 .207 10 .008 .019 .28 : 061
12 .044 .115 .156 .218 12 .007 .019 : 033 .068
16 .061 .141 .179 .232 16 .007 .025 0 .090

DZ - 512 DZ - 2048

IMP/TZ 7 10 12 16 MI/TZ 7 10 12 16
7 .014 .037 .052 .102 7 .003 .006 .011 .024
10 .014 .041 .068 .130 10 .003 .006 .011 .024
12 .017 .049 .079 .144 12 .003 .009 .014 .029
16 .021 .067 .102 .168 16 .003 .009 .015 .034

PD : Conditional Probability of a Lock Request
.. -: Causing a Deadlock after Conflict

Figure 2.2

4 S.

"' p

_ % ,. ,L - . . ,' -.. :' ., , -. .. 1.b; . ; ;- ..-' - • ".--.--." , -. -' ,'

-15-

DZ -256 DZ - 1024
P/TZ 7 10 12 16 MP/TZ 7 10 12 10,
7o"4 "01.27 .0o/ 10 .80oo .ooos, oSo.89.0132 .0247 7.002 .0000 8 .0:S O

II :S?UZ :Silt :S81t :NJi 11 :8SI~ :88l :88iM :88H
DZ - 512 DZ 2048

MP/Tz 7 10 12 16 3/Tz 7 10 12 16

7 .0006 .0021 .0034 .0083 7 000030 .00009 .00019 .0006
10 .0008 .0033 .0064 .0146 10 000045 .00013 .00029 0008
12 .0012 .0048 .0088 .0187 12 .000057 .00023 .00043 .0012
16 .0020 .0085 .0145 .0269 16 .000075 .00032 .00063 .0019

PCzPD : Absolute Probability of a Lock Request
Causing a Deadlock af ter Conflict

Figure 2.3

DZ 256 DZ -1024

MP/TZ 7 10 12 16 M/TZ 7 10 12 16

7 3.76 6.18 7.85 11.01 7 3.09 4.49 5.60 8.26
10 4.64 8.25 10.55 14.40 10 3.19 4.93 6.42 10.57
12 5.36 9.52 12.09 15.70 12 3.35 5.34 7.25 11.80
16 7.27 12.52 15.24 18.65 16 3.54 6.65 9.30 16.05

DZ - 512 DZ - 2048

MP/TZ 7 10 12 176 M/TZ 7 10 12 16

7 3.33 5.12 6.60 9.72 7 2.94 4.11 5.00 7.01
10 3.66 6.18 8.50 13.37 10 3.01 4.39 5.42 8.13
12 3.88 7.19 9.91 15.28 12 3.07 4.49 5.64 8.88
16 4.71 9.77 13.53 19.43 16 3.14 4.88 6.35 10.91

_N WT : Average Waitin Time of a Conflicting
Lock Request orter the Conflict

Figure 2.4

2.4 Results of 20/80 Access Model

The results of simulating the 20/80 access model are shown in Fig-

ures 2.6 through 2.10. They are similar to the results of the random

access model with heavier load. The reason is that when 20% of the data-

lop base is used 802 of the time, the sme load of the random access model

becomes a heavier load. The probability of conflict, the probability of
deadlock, and the average waiting of a conflicting lock request still

increases with both the transaction size and the multiprogramming level.

.- , •......*. -.. ,....

Is,.. . . * .'. -. . C .C , , -. o , . ,.*, ., ...* ,.C

-.-..:-. ... --.... .-. . U: . -:''

-16-

DZ -256 DZ -1024

MP/TZ 7 10 12 16 NWITZ 7 10 12 16

7 2.86 5.28 6.90 10.09 7 1.95 3.35 4.36 6.92
10 4.02 7.59 9.88 13.56 10 2.16 3.94 5.50 9.62
12 4.93 9.03 11.26 14.78 12 2.38 4.52 6.49 10.98
16 7.05 11.77 14.19 17.66 16 2.68 6.15 8.97 15.51

DZ512 DZ -2048
MP/TZ 7 10 12 16 HPITZ 7 10 12 16

-- ~ - ------

7 2.29 4.08 5.44 8.61 7 1.80 2.80 3.49 5.46
10 2.78 5.45 7.76 12.51 10 1.89 3.09 4.0 9
112 .93 t:11 11:22 14.7 12 1.94 3.2 4.53 3 0

90 8 17 16 20/t16 1. 52 .92

DV : Standard Deviation of the Waiting Times of
Conflicting Lock Requests

Figure 2.5

The probability of conflict increases faster with the multiprogramming

level than with the transaction size, vhile the reverse is true for the

probability of deadlock and the average waiting of a conflicting lock

request. If diagonal lines are drawn for the tables (as previously

explained), the number below the line is always larger than the

corresponding number above the line for the probability of conflict, and

the opposite is true for the probability of deadlock and the average

waiting of a conflicting lock request. But the differences diminish as

the load becomes lighter.

Applying regression analysis to data in Figure 2.6 results in equa-

tion (2.8). Similar to equation (2.1), it shows that the coefficient b

is always larger than the coefficient c. The major difference between

this equation and equation (2.1) is that the coefficient a of equation

(2.8) is equal 2.7, much larger than the 0.72 of equation (2.1).

3.l(NP1 1.08+1.51L TZ
1 .08+0.58LPC - "Dz;-T;T- q ._ _ __ _____(2.8)'.-

vhere

IMP p TZ. ...- L "-''.-
DZ

1.. To examine the relationship between the probability of conflict and the

lockable unit size, ye replace TZ by wTZ and DZ by kDZ in equation

(2.8), and obtain equation (2.9).

.. - -....... .- ,. -",-

- C C•. ° ..

-N.-- -17

PC'int xPC (2.9)

where
DZim3 9 rL ,1e(O.58Lv)/k 29

t - 3t-L 3 =-MM. MOT~7E (.s

and

r -1I-v/k.

If the database is veil placed, then v is equal to k, and equation

(2.9a) becomes equation (2.9b), which shows that smiller lockable units

reduce the probability of conflict, consistent with the result of the

random access case.

t -0 8 1 (2.9b)

If the database is badly placed, then w is equal to one, and equation

(2.9a) becomes equation (2.9c). Equation (2.9c) shows that if the load

L is less 50%, which is within the range of our simulations and is real-

istic, smiller lockable units reduce probability of conflict. In sum-

nary. whether the database is originally well or badly placed, reducin

* lockable units reduces the probability of conflict. This result is the

same as in the random access model.

'N mTOME. i;.3ffrt~k-i-t.s-9T7 (2.9c)

where

r -1-Ik

Regression of the data in Figure 2.8 results in equation (2.10),

which shows that when the load L is greater than 33Z. the coefficient c

is smiller than the coefficient b. Therefore, for a fixed load of 33%

or higher, a system with higher multiprogramming level and smiller tran-

multiprogramming level and longer transactions. This result is similar

to the random access model.

ISO

0S(NPl).4l+2 .66L TZ3.8 8 &47 4L
PD' - -K - -j2:33--T3L ------- (.0

where

Ix TZj
DZ

- To examine the relationship between the probability of deadlock and the

-* lockable unit size, we replace TZ by vTZ and DZ by kDZ in equation -*

(2.10). and obtain equation (2.11). <
PD" - t x PD' (2.11)

1C where
T4.74Lr w3.88-(4.74Lw)Ik

t2E I L r 3 D 3 ~ 7 (2.*11 a)

If the database is well placed, then v is equal to k, and equation

* *(2.11a) becomes equation (2.11b). Similar to equation (2.4b), it showse
that when the load L is less than 34%, which is realistic and within the
range of our simulations, t is greater than one. That means larger

*lockable units reduce the probability of deadlock. This result is simi-

*lar to the one found in the random access model.

t n 1 .*55-4.61L(2lb

For the badly placed database, setting v to one in equation (2.11a)
'S. results in equation (2.11c0, which shows that, within the range of our

simulations, smaller lockable units reduce the probability of deadlock.

This result is also similar to the one found in the random access model.- TZ4.74Lr
t (2.110)

t -A (f.) 2 5 DiD. 3Ek 2 3 -DTL

Regression on the data in Figure 2.9 results in equation (2.12).

0037(1)1.7(L-0.1) 2 _0.24 1~4 .8(L-0.22)2+0.25
WT DTT 2 7 E------- 34=-7tD2 --------- ------ (2.12)

Replacing DZ by kDZ and TZ by kTZ, equation (2.12) becomes equation

(2.13a), which shovs, as does equation (2.6a), that t is greater than

one -longer waiting delay for a conflicting lock requjest.2

0T kO11.4(L-O.4)2 (2.1. a)

Replacing DZ by kDZ, but leaving TZ unchanged, equation (2.12)
becomes equation (2.13b), which shove, as does equation (2.6b), that

when the load is light ad k is small. t is greater than one. There-

fore, in general, reducing the size of lockable units increases the
waiting delay of a conflicting lock request, except when the load is

heavy, the database is badly placed, and the reduction of lockable unit
size is large.

WT- (2.13c)

D13 .4rL(qL-O.4)

where

q ~I I /k3

Regression on the data in Figure 2.10 results in equation (2.14).

DV -- 0.88 + WT (2.14)

DZ -512 DZ -2046

HMPITZ 7 1012 16 3/TZ 7 10 12 1

7 .119 .150 .163 .176 7 .033 .045 .054 .067I
10 .166 .198 .210 .221 10 .048 .067 .078 .095
12 .192 .225 .237 .245 12 .059 .080 .092 .110
16 .236 .268 .277 .284 16 .078 .105 .119 .137

DZ - 1024 DZ - 4096

IMP/TZ 7 10 12 16 XPITZ 7 10 12 16

12 .110 .142 .155 .173 12 .030 .042 .050 .0642
16 .143 .177 .191 .207 16 .040 .057 .067 .083 40

PC: Probability of a Lock Request conflicting
With Another Lock Request

Figure 2.6

A;

J. .1.

-20-1

..%DZ 512 DZ 2048

NP/TZ 7 10 12 16 NP/TZ 7 10 12 16

7 .057 .124 .168 .230 7 .011 .028 .044 .086
10 .072 .149 .189 .242 10 .012 .032 .050 .104
12 .081 .161 .201 .246 12 .013 .035 .060 I11i16 .102 .181 .214 .247 16 .015 .046 .078 .141

DZ - 1024 DZ - 4096

NP/TZ 7 10 12 16 HPITZ 7 10 12 16

7 .025 .057 .089 .156 7 .005 .012 .019 .037
10 .028 .075 .117 .181 10 .006 .013 .021 .046
12 *032 .086 .126 I19i 12 .005 .014 .023 .051
16 .042 .109 .149 .21 16 .005 .016 .029 .067

P:PD Conditional Probability of a Lock Request
Causing a Deadlock after Conflict

Figure 2.7

DZ - 512 DZ - 2048
- --------------------- --- -

NPITZ 7 10 12 16 MP/TZ 7 10 12 16

7 .0068 .0186 .0274 .0405 7 .00036 .00126 .00238 .00576
10 .0120 .0295 .0397 .0535 10 .00058 .00214 .00390 .00988
12 .0156 .0362 .0476 .0603 12 .00077 .00280 .00552 .01243
16 .0241 .0485 .0593 .0701 16 .00117 .00483 .00928 .01931

DZ - 1024 DZ - 4096
- ------------------------ ------ -

HMPITZ 7 10 12 16 IHP/TZ 7 10 12 16

7 .0016 .0048 .0087 .0181 7 .00008 .00028 .00053 .00133
10 .0026 .0092 .0158 .0273 10 .00015 .00045 .00086 .00243
12 .0035 .0122 .0195 .0337 12 .00015 .00058 .00115 .00326
16 .0060 .0193 .0285 .0437 16 .00020 .00091 .00194 .00556

PCxPD Absolute Probability of a Lock Request
Causing a Deadlock after Conflict

Figure 2.8

V4

'.4.V

lop

-21-

DZ -512 DZ -2048 0
.P/TZ 7 10 12 16 HP/TZ 7 10 12 16

7 4.21 6.81 9.49 11.11 7 3.22 4.81 6.11 9.36
10 5.44 8.94 10.83 13.08 10 3.50 5.70 7.69 12.36
12 6.50 10.19 11.93 14.39 12 3.65 6.32 8.99 14.5
16 8.44 12.64 14.26 16.32 16 4.19 8.50 11.92 18.43

DZ - 1024 DZ - 4096
- - -- --- - --- --.--- - - - - -- - -

MP/TZ 7 10 12 16 MP/TZ 7 10 12 16

7 3.51 5.71 7.37 10.83 7 3.07 4.33 5.28 7.66
10 4.25 7.54 9.75 13.89 10 3.15 4.65 5.96 9.49
12 4.75 8.71 11.43 15.79 12 3.21 5.00 6.58 10.87
16 6.04 11.49 14.53 18.92 16 3.40 5.77 7.99 14.54

WT : Average Waiting Time of a Conflicting
Lock Request after the Conflict

Figure 2 9

DZ -512 DZ - 2048

HP/TZ 7 10 12 16 MP/TZ 7 10 12 16

7 3.48 5.94 8.49 10.35 7 2.17 3.75 5.00 8.01
10 4.89 8.36 10.14 12.49 10 2.57 4.83 6.95 11.63
12 6.04 9.62 11.38 13.75 12 2.79 5.69 8.45 13.70
16 7.98 11.93 13.54 15.65 16 3.56 8.22 11.47 17.18

-,- DZ - 1024 DZ - 4096

.- MP/TZ 7 10 12 16 MP/TZ 7 10 12 16

7 2.60 4.78 6.41 9.72 7 1.91 3.05 3.97 6.26
10 3.59 6.96 9.24 13.02 10 2.07 3.53 4.83 8.55
12 4.21 8.18 10.72 14.92 12 2.17 4.02 5.72 10.25
16 5.73 10.98 13.72 17.68 16 2.48 5.08 7.61 14.02

STD-DEV : Standard Deviation of the Waiting Times of
Conflicting Lock Requests

Figure 2.10

2.5 Summary

We simulated the two-phase locking in a DBMS with fairly constant

communication and 10 delays. We collected performance data, and

regressed these data into equations relating the performance of the DBMS

to the multiprogramming level, the transaction size, and the database

size. Using these equations ye examine the interaction between the per-

formance of a DBMS and lockable units size.

....--.. .. -...... . - - -: ... : . - "-

9.1

-22-

We found the performance behavior of a DBMS with random database

access distribution quite similar to that of the 20/80 access distribu- 0

tion - the 20/80 system behaves as a random access system in heavy

load. In fact, the same regression models (equations) with different

coefficient values fit both-access models well except for the standard

deviation of the lock request waiting delay. "0

The probability of conflict of a lock request increases more than

linearly with the multiprogramming level and the transaction size; the

increase is larger with the multiprogramming level than with the tran-

saction. The probability of deadlock, the average waiting, and its

standard deviation of a conflicting lock request also increase more than

linearly with the multiprogramming level and the transaction size. But

--_*_ the increase is smaller with the multiprogramming level than with the

transaction size.

The waiting delay of a conflicting lock request can be approximated

by an Erlangian distribution in the random access model. This result

can be extremely useful for researchers who use queueing theory to model

a DBMS.

The results of this study have been validated, and can be extrapo-

lated for database size of up to 12384, multiprogramming level of up to

128, and transaction size of up to 32.

So far we have concentrated on the basic factors of PC, PD, WT, and

DV. We will next briefly discuss the combination of these blocking and

restart variables into system throughput, a measure of performance which

." is more directly useful to a system designer.

In the highly functional model used here, all system resources are

represented by the time to process lock requests. Since each request

consumes the same time, we measure throughput by number of lock requests

processed by transactions which finish.

In every case, throughput decreases with increasing TZ, if MP and

S" ' DZ are held constant. As noted above, for longer transactions there are

more conflicts, more deadlocks, and longer delays. The message for

applications program design is clear. Transactions should be made as

small as possible.

' ~~~~~~~~~~~~..'.................................. .."'..-"-"- ".'? ' ---. :"- -. .-
:- , ..." ' -*.~-"- '" *.. -"*- . * - - . ' -"" . " -.- ';- ".. , .-. " . .. " " " '

' .- .-" . '"-- -. . 4--- - -' ----..'; ".'... ,,-. -- ".--.."-... -.. ""-" "". "-..--

-23-

Also, throughput increases vith increasing DZ if HP an~d TZ are held

coustanto This is the "badly placed lock." case, and it alio can be ..-

anticipated from the analysis above. For random access oi .9-ta, small

granules will provide better throughput when both blocking and restart

behavior are considered. However, because of the increasing communica-

- .* tions and processing costs of lock management, the response time will

increase. The optimal granularity can be calculated from the regression

equations.

Finally, throughput first increases, and then decreases with

increased HP if TZ and DZ are constant. Given a particular granularity

and transaction size, f or light loads, significant gains in throughput

can be attained by increasing the multiprogramming level. However, as

the system load becomes heavier, the losses to deadlock and restart more <A

than outweigh the gains from increased concurrency.

V.

2.6 References

[1] Gray, J.N., et al., *Grinularity of Locks and Degrees of Consistency
in a Shared Data Base P ,IIP WokXa Cgnference RUA deli
kf AtA Base Management ffitmi,.Freidanitadt, G~ermany, January

12] Lin W.T.K., "Performance Evaluation of Two Concurrency Control
Mec~anisms 'in a Distributed DBMS" I%.NC-SIGMOD.1281 Internzn
Conference n Miaaemnt. of Daa Ann a r, Micigan, ApilIUT

[3] Nakamura, et al.,,1"A Simulation Model for a Database System Perf or-
mance Evaluation", AFIPS Proc. 1975 NCC Conference, Volume 44, May
1975.

[41 Spitzer, JeFe, "Performance Prototyping of Data Management App lica-
tions" Proc. CAM'Jj6 Annual Corrne Houston, Texas, October
1976.

[5] Munz ,Rt, et ali "Concurrency in Database System -A Simulation
Study", Prr AC. M SIGMOD International Conference, Toronto, August
1977.

[6] Ries, D., "The Effect of Concurrency Control on Database Management
System Performance", Ph.D. thesis ElecrncReachLbUiv -
sity of California, Berkeley, 1970. toisRsarhLb nvr

S V

-24-

COMMIUNICATION DELAY AND TWO PHASE LOCKING*

Wents X. Lin

Jerry Nolte

Thsppra ae nth hr n' ofrnc nDsrbtdCm

puigsstm.~t.18)

.4.%

. -.- - . *..

-25-

3. Communication Delay and Two Phase Lockig

Abs tract

A lock request in a distributed DBMS incurs sany kinds of delay. We
roup these delays into two classes, The first one, called blockn
felay, results from one lock repquest waiting for another lock reque~s
because of lock conflict. *it is adirect result of concurrency control.
The second delay, called comunication delay, consists of comnication
network delay, 10 delays and CPU processing delay.* In this paper * for
two Phase locking in a distributed DENS, westudy howthe communication
delay affects te blocking delay and aystui performance. The results
show that the communication eclay has little effect on the probabil'ty
of conflict and deadlock of lock requests. The results also show tiat
the blocking delay has a 2-stage qtgian distributiop and that the
number of locks held by a transacti~n wen the transaction deadlocks and
aborts has a 2-order negative binomial distribution. The results are* imuoprtant to performanqe m9deling of distributed two phase locking algo-

rithas, because they simplify the models.

*• I
.- j~ . -
S.. .- o.

r

£:ij§:t>;;~K j::&2 jj:>;~j~ .: 1E, i 7

-26-

3.1 Introduction -

Many distributed concurrency control algorithms have been proposed

(Bad[l], Ber[l], Ell[1], Gar[], Lin[4], Ros[l], Ste[l, Stoill, '

%.0 Tho[lI). But bow veil do they perform? A few researchers have

attempted to compare the performance of different algorithms (Gar[l],

Lin[l], Lin[2], hiell], Tha[l]). Unfortunately they all used different

assumptions about system and application parameters. Furthermore, they

compared different algorithms using different performance measures. For

example, in Lin[l], two timestamping algorithms are compared, and the

performance measure used is the average response time.

In Rie[l], two two-phase locking algorithms - the centralized

"" method and the primary copy method - are compared. Performance meas-

ures include utilization of devices, average transaction response time,

and others. In addition, a transaction must obtain all its locks before

it can start, no duplicate data is allowed, and multiprogramming level

- is assumed to have no effect on system performance.

In Gar[l], three two-phase locking algorithms are compared - the-

centralized method, the voting method, and the ring method. Both utili-

zation of devices and average response time are performance measures. A

few major assumptions are made: multiprogramming level is one at each

node, a transaction must obtain all locks before it proceeds, and a

transaction requests all update locks in parallel. In addition, the

main results apply to a fully replicated system.

In Lin[21, distributed two-phase locking algorithms are abstracted

and encapsulated in one model, and the relation between system blocking

behavior (conflict and deadlock) and various system and application

parameters is studied in detail. Two access distributions of the data-

base are simulated. The first one has a uniform distribution -- every

data granule is equally likely to be accessed by a lock request; the

second one has 80% of the database accessed by 20Z of the lock requests.

S It concludes that the more concentrated database access distribution has

the same effect on system blocking behavior as the uniform distribution

in heavier load.

- 2 -

-27-

In Th[l], two two-phase locking algorithms are simulated - basic

two-phase and centralized two-phase. The performance measur . ased is ,

the average transaction response time. The simulation ridel includes

many system and application parameters, thus necessitaa3ng a large

number of simulation runs. But only the results of a few simulation

runs with limited values of theue parameters are presented.

These performance studies are very difficult to compare, and it is

almost impossible to integrate their results. They compare different

algorithms, they make different assumptions about system and application

environments, and they employ different measures for system performance.

This paper is part of a major effort to compare the principal distinct

concurrency control algorithms, using the same performance measures and

the same assumptions that are consistent with various system and appli-

cation environments.
, 17

This paper reports part of the results of simulation on two-phase

locking. Section 3.2 describes the simulation model, Section 3.3

discusses the simulation results, and Section 3.4 concludes the study.

3.2 The Simulation Model

Two phase locking causes blocking and deadlocks among transactions.

Blocking occurs because two or more transactions may request the same

data item at the same time. Blocking degradates system performance

because a blocked lock request must wait for the blocking transaction to

complete or abort. This waiting is called blocking delay. Deadlock
occurs when two or more transactions directly or indirectly block each

other. Deadlock also degradates system performance, becuase a deadlock

causes a partially completed transaction to abort and restart. S

Transaction blocking and restarting are affected by many system and

application characteristics. These include average transaction size

(number of locks requested by a transaction), multiprogramming level

(number of transactions running concurrently), database siz; (number of

locking granules), access distribution of the database (probability -of '
each data granule being accessed by a lock request), frequency of local

and remote requests, locking granularity, communication network, 10

. .- ,
,. -. , , .. °

-28-

devices, memory size, CPU speed, and others. Thus to accurately evalu-

ate the restarting and blocking behavior of the two phase locking, we

must include all these factors in the simulation model, and this is too

expensive to do directly.

"-P To simplify the simulation, we model the system and transactions in

a highly functional model. Much of the detail of a real distributed

system is captured in a few parameters, which are used as inputs to the
o.4

simulation model. This approach permits us to greatly reduce the number

of simulation runs necessary, and also to reduce the complexity of the

model, while retaining most of the impact that these details have on the

" performance of the concurrency control algorithms.
.. '.-...

We model a transaction as a sequence of lock requests. Between two

consecutive lock requests, a transaction incurs two kinds of delays:

blocking delay and communication delay. The communication delay

includes communication network delay, I0 delay, and CPU processing

delay; it is called communication delay because in a distributed system

it is likely that the communication network delay dominates the 10 and

the CPU delays. The comunication delay is an input parameter to our

simulation model, while the blocking delay is an output parameter.

.. Thus, the blocking delay is measured as a function of the communication

delay.

For each simulation run, we assume the communication delay to have

certain probability distribution, but we vary the probability distribu-

tion for different simulation runs. We use only hypo-exponential and

hyper-exponential distributions; therefore each distribution can be

characterized by its average and standard deviation.

Since the communication delay, consisting of communication network

delay, 10 delay, and CPU delay, is an input parameter and is modeled by

an abstract probability distribution function, we make no assumptions

,:. about the characteristics of the underlying communication network, 10

devices, and CPUs, and their relative performances. In fact, communica-

5, 4tion networks, 10 devices, and CPUs of various performance characteris- _

tics are modeled by different probability distribution functions. For

example, a high bandwidth and lightly loaded system has small variation

in communication delay, thus it can be modeled by a distribution

• .-U.-

".- , .' 'F - ' '- '" , ." ' . -"-'. " A" -• . ." - - " "- - " -- . ,., " . . " " - - - " " -- .

-I - V e. - J7. . . .

-29-

function with small standard deviation, while a loy bandwidth and

heavily loaded system can be modeled by a distribution function with

large standard deviation. Notice that the average communication delay

is used as the simulation time unit; therefore the average communication

delay is not a factor in the simulation model. Thus the simulation

results, especially the blocking delay, must be scaled according to the

actual average communication delay.

Besides communication delay, input parameters of the simulation

model include average transaction size, multiprogramming level, database

size. and ratio of read-only transactions to update-only transactions

entering the system. Besides blocking delay, performance measures (out-

put parameters) include the probability of conflict of lock requests,

the probability of deadlock and restart of lock requests, and the number

*. .. of locks held by a transaction when the transaction deadlocks and res-

tarts.

We did not explicitly include the frequency of local and remote

data requests as an input parameter because it is captured by the proba-

bilistic distribution of the communication delay. For example, a system

with mostly local data requests can be modelled by a distribution func-

tion with small mean value. Neither did we include locking granularity

as an input parameter because locking granularity is a function of the

database size and the transaction size; increasing the granularity is

equivalent to decreasing the database size and the transaction size.

Moreover, we simulated only random access to the database - every lock-

ing granule has the same probability of being accessed by a lock request

- because our previous study (Lin[2]) showed that more concentrated

"-c) access distributions had the same results as the random access distribu-
tion in heavier load. The input parameters of the simulation model are

discussed further in the remainder of the section.

For a database size (DZ) of N, N locks and N queues for the locks
are simulated. Deadlock can occur, and the transaction in the deadlock

cycle that holds the least number of locks aborts and restarts imedi-

ately. -The reason we choose this particular transaction to abort is

.' that our previous study (Lin[31) concludes that this deadlock resolution

algorithm performs best in all system and application environments.

* .-. - p.- . .

-30- -

Transaction size (TZ) is assumed to be exponentially distributed.

The average of the distribution varies among different simulation runs,

"'-"but remains fixed within a simulation run. A transaction requests locks
sequentially, but different transactions request locks asynchronously." ' 9

This model is general enough to include all transaction types of

interest. For example, to model transactions in which read requests and * .

update requests respectively are issued in parallel only once, the tran-

saction size can be set to two.

After a lock request is granted, a transaction waits for a period

of time before requesting another lock. The period of time is the com-

munication delay discussed previously. The average of the communication

delay is fixed at one for all simulation runs, but the standard devia-
-* . tion varies among different simulation runs. The simulation results can

easily be scaled to whatever the actual average of the communicatior
-, delay may be.

-'. For a simulation run, the multiprogramming level (MP) is fixed;

thus the model is closed, and a new transaction is generated and started

only after one completes. The results of the simulation are presented

"-" in the next section.

3.3 Simulation Results

We simulated three different distributions of communication delay.

All are erlangian and have the same average delay of one time unit; one

..-. has a standard deviation of 0.368, the second 1.87, and the third 5.28.

For each standard deviation of communication delay, we simulated three

different multiprogramming levels, three average transaction sizes, and

three database sizes, for a total of 81 system configurations. Figures

-.- 3.1 through 3.8 show the results.

From the results we can conclude that the standard deviation of

communication delay has no effect on the probability of conflict and the

m probability of deadlock of a lock request, or on the number of locks O

held when a transaction deadlocks. But it does have an effect on the

average waiting time of blocked lock requests (blocking delay) - the

larger the standard deviation, the longer the average waiting. We

* -. . p.

,.... ,. .-.. , . . . : . ":2:"2 " - .2J'- ~

-t 7-

-31-

discuss the details of these observations in the rest of the sertion.

Each point of Figure 3.1 represents the probabilities of conflict

(PC) of two system configurations with same multiprogrxuing level,

average transaction size, and database size, but with different standard

deviation of comunication delay (DEV). One has a standard deviation of

0.368, and the other of 5.28. The X-coordinate of the point represents

the probability of conflict of the former configuration, while the Y-

coordinate represents the probability of conflict of the latter confi-

guration. From the figure, we can see that all points lie very close to

the diagonal line - implying that two system configurations with widely

different standard deviations of communication delay have the same pro-

bability of conflict. Thus we can conclude that the standard deviation

of communication delay has no effect on the probability of a lock

request conflicting with another lock request. The reason is that the

probability of conflict of a lock request depends only on the total

number of locks outstanding in the system, which our simulation results

show to be independent of the standard deviation of communication delay.
0.0

Simla tFigr3.,Fgr3. rersnstepoaity f

dea k ad atmat a
'U"' "

al a

-2-.2..

| ai

a

I a

0.0 " --- -- i'
"

6.0 PMIl~LnY eW CamPaJC: E[V * 5.3m 0.C..

Figure 3.1 PC (DEV=5.28) Vs PC (DEV=.368)..-.

Similar to Figure 3.1, Figure 3.2 represents the probability of i J'

deadlock and abortion of a lock request for the two different standard"--;

.'i" deviations of communication delay. From the figure, we can also con-

-32-

I I•

ftm."o v koma Ko .0.

how ths lok reitiue mn tascin.Orsmlto

-:-.:

• - I I ,,

results sho a e o a i ,d..nen o

.. Figure thog 3.3 p lot (D f-528 verg trnscto size68 of'4,

16, an 32rsetvlteaeaewatn eafbokdlc

. ~reuestshagnt the standard deviation of communication delay f or effat.ri-

whn the avrageltransac tion a lirramming level

..- ..,P are small. Osthris the nrob a sit les hanc linear witc ommeun- -'

dependsion de ton In fact in th e sction

r'%" " larger thae 32,k the vaiatrib eon hl t ransafct ons the wa itin dlay.n- -

SOhm--. ma. .5 .

-This how be thpatie 3 the twollowins ame Ideende transatonsr

oe thetsy the standard deviation of communicationdelayhs

r. des nd on the tal nmb otef lcs totsani uini he t otnl aerd ao

howreteses locnst are dstributd dvatono tranactuns ationdeayo r--

reussytmoniuain.Te show that theseto atosarvnepedetofe tndead ;

inrae ierywt h tnaddeviation of Communication delay.-.

whenigre 33 th roge.c lt o average transaction size of)adth utprg~n 4,e .i.

w (reqest aginstl Ohithehadr eirai ofs conton dieay forh vamn- O

-..." caon syse conigration. The show, hat the average wraistin delay"

. . incresstlinearly withan the standard deviation of communication lay.

• :% dica i dlayritin. Incthentm eqie he ae ragactrnstionmlt is".

- :: ~varies greatly, say from 10 time units to 35 time units, with an average,.-'.

• .. o. °. . . ., . % ," . o. . , . o . • . , ., .o * . . -. . . -

"" " " " 3 , " : , " € . " " " " " . - " " . , , * " - ."J ." . " , " ' ," , " J ,. " "f ,

-33-

UnNOIMOM L

Ii 0)

i .. ----

Figure 3.3a Average Blocking Delay when TZ-4

W6. LMU

5 16. Ub))

(W 8z

-O ,..1 0 S(TOM .

Fiur 3.bAeaeBokngDlywe Z1

of 15 tieuis Sic blce eusstnSo atfr tascin

tha haebe ntesse ogr hs lcigtasacin edt
tak fro 15 to3 ieuistIopeewt naeae o 5 tm

unt. Bu fth tnar eiainofcmuicto dlyissal

-34-

then the time required by a transaction to complete varies less, say

from 10 to 20 time units (with the same average of 15 time units). But .0

the blocked requests most likely wait for transactions that require from

* .1

gOIJ OF- MOe-Oa

-:::::Figure 3.3c Average Blocking Delay when TZ-32

-. :."15 to 20 time units to complete, with an average of 17 time units, which)'

:.. ,. is such smaller than the 25 time units of the previous cast. Therefore ...

/-: the blocked requests in a configuration with larger standard deviation '

~"-'" of communication delay tend to wait longer if the average transaction ""

"" ."size is small.

- -. "oS.o "U)

__,,, If all transactions are large, then the time required by a transac- O

tion to complete varies little with the standard deviation of communica-

tion delay. The communication delay between two consecutive lock

requests by the same transaction may vary widely if the standard devia-

,0 _ tion of communication delay is large, but since each transaction -'0

..... requests many locks, these variations eventually average out within each....

-. ~transaction. Therefore the average waiting delay of blocked requests is. ,

'" " relatively invariant with the standard deviation of communication delay .'

0; if the average transaction size is large. 0

-:.. .. In Figure 3.4, the X-coordinate and the Y-coordinate of each point -

".',.',represent respectively the average wait and the standard deviation of
tbkoco

:---th witofblckd oc rqust o asyte cnfguaton Tes 5

Ii -

7 *.7.0 W. 7 . r70.r r

-35-

points represent the 81 runs with some runs overlapping on the same

points. The figure shows that the standard deviation oi the waiting

delays of blocked requests is a fixed ratio of the average waiting delay

regardless of multiprogramming level, average transaction ii: , database

size, and communication delay variation. This observation implies that

the waiting delay of blocked lock requests may have % fixed distribution "

function regardless of the systm configurations; but the average of the

distribution function is dependent on the system configurations as Fig-

ure 3.3a through 3.3c show. We plotted the distribution functions for - -

some of the configurations, and all of them look similar to the one 0

shown in Figure 3.3, which closely approximates 2-stage hypoexponential

(Erlangian) distribution function. In fact, the fixed ratio of Figure

3.4 (the slope of the line) approximates the standard deviation of a 2-

stage hypoexponential distribution.

I.I I "• "

I I, ,
I I
I S -I 0-
t I

I I

ii S S•'"I

","
3,,'I'

I '!

Oa I

• I

For eahsse ofgrain ecmueth vrg ubro

I I
I I

i I I

Figure 3.4 Average Vs Standard Deviation @0

of Blocking Delay .

For each system configuration, we compute the average number of -,. .

locks held by transactions when they deadlock and abort, denoted by

LOCKS_ATDEADLOCK. Each point of Figure 3.6 represents the avera&"

LOCKSATDEADLOCKs of two system configurations with same multiprogram-

ming level, average transaction size, and database size, but with dif-

*,a.ferent standard deviation of communication delay; one has standard

-36-

Figure 3.5 D sibut f Bocin Dla

10.0

MeI
I&M 6. 0f;IM;TkAR

KV- .

Figure 3.5 DiOribtio AL DofK (Dlocking Del.
3.0ITEDOC DV-54

deito of054 hSte f52.Th -oriaerpeet h

avrg -LC IM DEDOK o h omr cniuaiovieteY

corint rersnstelte ofgrain rmtefgrv a

se ta alponslevr cls totedaoa line mligta

I Ik
L04

. .. V rr , W A

Sg:TV~~~~s Stndr Deitino

catio d----- hv tesa LOK AT DEDL. Thus we ca ocueta

III

held b abort

Figure~~~~~~~~ 3.7 Thspo prxmtsasrih ie niaigta

Rersso anlyi inicte th"ai saot070 mligta h

nubroflc s da edokmyhv -r eivebnma
ditrbuio. Thsdsrbto*sotie ytrwn a bisdcn

reetdyutlw bantescn ucss Th nube of trw

I o|

to d a a i

de d oe coin, and t ias 1c e o

Figure 3.7 Average Vs Standard Deviation of .t.- d bLOCKS_AT_.DEADLOCK 1

two configurations with widely different standard deviation of communi-

cation delay have the same LOCKSAT_DEADLOCK. Thus ye can conclude that

the communication delay variation has no effect on the number of locks "-t
*held by a transaction when the transaction deadlocks and aborts. : : ''

For each system configuration, the standard deviation of the number .T.I

.- of locks held by transactions when they deadlock and abort, represented .--

"-" by DEV._LOCKS__AT_DEADLOCK is plotted against the LOCK SAT._DEADLOCK in -..

~~~Figure 3.7. This plot approximates a straight line, indicating that""'-

m ~DIVLOCK[SATDEADLOCK may be a fixed ratio of LOCKSATDEADLOCK. '!

' ": Regression analysis indicates the ratio is about 0.70, implying that the i

:£' . number of locks held at deadlock may have a 2-order negative binomial.'i,]

: ", distribution. This distribution is obtained by throwing a biased coin_.':

"* repeatedly until we obtain the second success. The number of throws " .

represents the number of locks held by a transaction when the transac- -.-
~~~tion deadlocks and aborts. The mean of the distribution function "''

[-'-2" depends on the bias of the coin, and the bias of the coin depends on the -

2."; size. We plotted the distribution functions of a few system configura- .

., tions and found all of them looking like the one shown in Figure 3.8,-

" which closely approximates a 2-order negative binomial distribution.
-.

.

.--., - -,... .% ,, ',,. ,.', ' .,. . -. . . .- . , - . -- ., , .. ., : , ..,- . . , W -, - . . - , . . ,-

-38-

'-"" AT ,m a" taw . ?5'.-

Fir 3. itiuino OK TDALC

- oS*S

S s. I a h e t e

hl by a t acto ve th trnatoIedocsadaot.I

c t di

sacio .in it dadok ad abrs has a -re eaiebnma
deviatIon o . -e

large. stveary, i e average thac tion del, vari a n of

-.. .. caion dntelo -terer t ariaon, ethec lone the avmerge block- ~~

ing debyo But s in any se coanlict o aei Therefore i

.'. £act, th gure3.8distributin£n tion of L ubroCKSATDelCK tan

Incomrwecncoc-dht omnication delay variation has

Sno"effet bokn te cace of asystem lock request onlicin o dadlocing

held byiatratinactionswh the tranation dealosnd bortIon

- dfat, hmno the distribution fuciofh nubelosockspeeld by ah stan-r

' desation whe itdeialok ndlabort fhs av2rer trngatie biomil.

,o - '. s

hedistribution th tonaveraeandso e standard deviation ndependent-of.the

" '.£ cmincation delay telre h variation h ogrteaerg lc-"..

-3deay hey mean of they disibtonfi alocindependent ofTherstanrd t

eviatio of costmuniorainelay, isgifitheaveaetrnatinszei

-- 3 .- o"

.o . . arge. H .. owever if t e aveag transactio size.. is small,. th mean of -. .

"* ,-. ,.

-39-

These results are important to performance modeling of distzibuted

concurrency control, because they eliminate the standard deviation of

communication delay as one of the system parameters that affect system

performance. For an analytical model, this means that the communication

delay can be assumed to have an exponential distribution which simpli-

fies the model. For a simulation model, this means geometric reduction

of the number of simulation runs.

3.5 References

Bad.11 Badal, D•Z. et al*$ "A proposal for Distributed Concurrency Con-,'. '! Badl] _ro. .o; Partially Redunda nt Distributed Database System," 3rd " -

Berkeley Workshop on Distributed Data Management an ComputerNetworks, 1978 k.

Ber~l Bennstein, P, Goodman N. "Concurrency Control in Distributed
Database Systems , AMK omputing Survey, Vol. 13, No. 2, June
1981

E11[11 Ellis, C.A. "A Robust Algorithm for Updating Duplicate Data-
bases," 2na Berkeley Workshop on Distributed Data Management and
Computer Networks, May 1977 .'

Gar[1] Garcia-Molina, H., "Performance of Update Al orithas For Repli-
cated Data in a Distributed Database"I D• Thesis, Dept. of
Computer Science, Stanford University, June 1979

Lin[1] Lin V K "Performance Evaluation of Two Concurrency Controls
Mechanisms in a Distributed Database System " Sigmd-81 Int. 1
Conf. on Management of Data, Apr. 1981, Ahi Arbor, MI

Lin[2] Lin, W.K., Nolte, J., "Performance of Two Phase Locking," 6th
Berkeley Workshop on Distributed Data Management and Computer
Networks, Feb. 16-19, 1982, Pacific Grove, CA.

Lin[31 Lin, W•K•, et al., 'Distributed Database Control & Allocation:
Semi-Annual Report" Technical Report, Computer Corporation of
America, Cambridge, AA.

Lin[4j Lin, W.K., "Concurrency Control In a *ultiple Copy Distributed
Database System," 4th Berkeley Workshog on Distributed Data
Management and Computer Networks, Aug. 197-

Rie[l) Ries, D., "The Effect of Concurrency Control on Database Manage-
ment System Performance" Ph.D. Thesis, Electronics Research Lab,
Univ of Cal., Berkeley, 1979

Ros[l] Rosenkrantz, D.J., et al*, "System Level Concurrency Control for
Distributed Database Systems,' ACM Trans. on Database Systems,
Vol 3, No. 2, June 1978

St l Strs :.. :Rsnkrantz, D*J,, et al., ,"Distributed Database
Concurrency Controls Using Before-Values," Siod-81 Int'l Conf.
on Management of Data, Apr. 1981, Ann Arbor,

Sto[l] Stonebraker, M., et al•, "Concurrency Control and Consistency of
Mutil Coie ofit nDitiueoIGE 9 rn.o

.oftware EngVneering, Vol SE-5, No. 3, May 1979

Thal]M Thanos C n et ., "Performance Evaluation of Two Coqcurreucy
Control Mechanisms in a Distributed Database System, Lecture

.. , : : ,:,- .

-40-

Notes in Conputer Science, ed. G. Gaoo J. Hartuanis, Springer-0
Verlag, MY, f981

Tho[1J Thomas, i.E. "A Majority Consensus Approach to Concurrency Con- -

trol for Multi 1 Copy Database ACM Trans. on Database Systemse
Vol 4,No. 2, Sunel 19

-NO-

r. T. W7

-41-

READ ONLY TRANSACTIONS AND TWO PHASE LOCKING*

Vents K. Lini
Jerry Nolte

v:%
.5~

* .577

This ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ , pae ..ae nth eodIEEh.o'u eiaiiy i

Ditii MaeadDaaaeSytm JU118

.-42- 1
4. Read Only Transactions and Two Phase Locki'

Abstract

Intit ontls us that d' ditibuted DBMS using two phase locking
the ratio (denoted by R/W of read-oly toudt rnatons affects
system perf ormance - the higher th;euratio, the better the perf or-
sances Read-only transactions only request share locks, and thus should
cause fever confl.icts and deadlocks among all transactions. Therefore
b tb read-only and update transactions are expected to perform better if
1/W~ is higher. This paper reports the results of a study cQntradi'ctlng

t is inution, and discusses the relationship between the R/W ratio and
system performance in detail.

..... %-+

*s *,-'- ~ .

1A I

""-Jim

II AbstrA,

-43--

4.1 Introduction

Many distributed concurrency control algorithms have been proposed

(Bad[1J, Ber[l], l[i1, Gar[l], Lin[4], Ros[li, Stefl', Sto[l],

Tho[]). But hov veil do they perform? A few researchers have

attempted to compare the performance of different algorithms (Gar[l], 2;

Lin[l], Lin[21, Mun[l], Rie[l], Tha[l]). Unfortunately they all used

different assumptions about system and application parameters. Further-

more, they compared different algorithms using different performance

measures. For example, in Lin[l], two timestamping algorithms are com-

pared, and the performance measure used is the average response time.
*.4.

- In Rie[l], tvo tvo-phase locking algorithms - the centralized

method and the primary copy method - are compared. Performance meas-

ures include utilization of devices, average transaction response time,

and others. In addition, a transaction must obtain all its locks before .".-

it can start, no duplicate data is allowed, and multiprogramming level

is assumed to have no effect on system performance.

In Gar[l], three two-phase locking algorithms are compared - the

centralized method, the voting method, and the ring method. Both utili-

zation of devices and average response time are performance measures. A

few assumptions are made: all transactions are update transactions; mul-

tiprogramming level is one at each node; a transaction must obtain all

locks before it proceeds; a transaction requests all locks in parallel;

and the database is fully duplicated in every site (performance of par-

titioned database is treated briefly). b

In Lin[2], distributed two-phase locking algorithms are abstracted

into one model, and the relation between system blocking behavior (con-

flict and deadlock) and various system and application parameters is

studied. Two access distributions of the database are simulated. The

first one has a uniform distribution: every data granule is equally

likely to accessed by a lock request; the second one has 20Z of the

database accessed by 80Z of the lock requests. It concludes that the

more concentrated database access distribution has the same effect on

system blocking behavior as the uniform distribution in heavier load.

-' *-." " """ -" - " " . - " ".- -' "" " ' ' " '' ' , ",'j*~*~ . ._" '- ;". " .-' ." - a. ," -:''' , ."' .," " " _ - " '

In Tha[l], two two-phase locking algorithms are simulated - basic

two-phase and centralized two-phase. The performance measure used is .

the average transaction response time. The simulation model includes

many system and application parameters, but results of only a few simu-

lation runs with limited values of these parameters are presented.

These performance studies are very difficult to compare, and it is

almost impossible to integrate their results. They compare different

algorithms, and they use different assumptions about system and applica-

tion environments and different measures for system performance.

Therefore we began a major project in order to compare the principal

* - distinct distributed concurrency control and reliability algorithms,

using the same model, same assumptions, same performance (output) param-

eters, and the same system and application (input) parameters. This

paper reports part of the findings of this project. In particular, this

paper reports our findings about the relationship between read-only

transactions and the performance of two phase locking. We found that,

when the ratio of read-only transactions to update transactions

increases from 1/3 to 3Ji, the response times of both read-only and

update transactions and total system through-put remain unchanged,

except when the system load is extremely heavy and transactions are

long.

This paper is organized as follows. Section 4.2 describes the

simulation model, Section 4.3 discusses the simulation results, and Sec-

tion 4.4 concludes the study.

4.2 The Simulation Model

Because this paper reports part of the findings of a larger pro-

ject, we describe the simulation model of the larger project first. We

model a transaction as a sequence of lock requests. A lock request

incurs two kind of delays. The first, called blocking delay, occurs

because of lock conflict (two requests ask for the same lock). The =0

second delay, called communication delay, consists of communication net-

work delay, 10 delay, CPU processing delay, and others.

-45--

Blocking delay and communication delay are affected by many fac-

tors, in additional to the R/W ratio. These include average transaction 6

size (number of locks requested by a transaction), multiprogramming

level (number of transactions running concurrently), database size

(number of data granules), access distribution of the database (proba-

bility of each locking granule being accessed by a lock request), com-

munication network, 10 devices, memory size, CPU speed, and others

(locking granularity is not explicitly considered because it is a func-

tion of the transaction size and the database size). Thus to accurately

evaluate these two delays, we must include all these factors in the

simulation model, and this is too expensive to do directly.

To simplify the simulation, we divided the simulation into two

steps. During the first step, we considered the communication delay as

one of the input parameters, and the blocking delay as one of the output

parameters (performance measures); thus the blocking delay is measured

as a function of the communication delay. For each simulation run, we

assumed the communication delay to have certain probability distribu-

tion, but we varied the probability distribution for different simula-

tion runs. We used only hypo-exponential and hyper-exponential distri-

butions; therefore each distribution can be characterized by its average

and standard deviation.

Since the communication delay, consisting of communication network

delay, 10 delay, and CPU delay, is an input parameter and is modeled by

an abstract probability distribution function, we made no assumptions

about the characteristics of the underlying communication network, 10

devices, and CPU, and their relative performances. In fact, communica-

tion networks and 10 devices with different performance characteristics

are modeled by different distribution functions. For example, a distri-

bution function with small standard deviation simulates a high bandwidth '-

or a lightly loaded system, while a distribution function with large

standard deviation simulates a low bandwidth or a heavily loaded system.

Besides communication delay, system and application parameters .Ap

(input parameters) include average transaction size, multiprogramming

level, database size, ratio of read-only transactions to update-only

transactions, and access distribution to the database. Besides blocking

.......................

.04
-46-

delay, performance measures (output parameters) include probability of

conflict and deadlock among lock requests, average response times of

read-only and update lock requests, and system through-put.

During the second step of the simulation, the performance measures

obtained during the first step will be used to avoid simulating the

management of locks and timestamps. For example, vhena two-phase lock-

ing algorithm is simulated in the second step, the probability functions

of conflict and deadlock obtained during the first step will be used in

conjunction with a random number generator to decide whether a lock

request must conflict and deadlock. No locks and queues of lock

requests will be simulated explicitly. The second step simulation is

being continued and will be presented in a future report. The first

step simulation model is described in the rest of this section.

For a database size (DZ) of N, N locks and N queues for the locks

are simulated. Deadlock can occur, and the transaction in the deadlock

cycle that holds the least number of locks aborts and restarts imedi-

ately. The reason we choose this particular transaction to abort is

that our previous study (Lin[3]) concludes that this deadlock resolution

algorithm performs best in all system and application environments we

have simulated.

Transaction size (TZ) is assumed to be exponentially distributed.

The average of the distribution varies among different simulation runs,

but remains fixed within a simulation run. A transaction requests locks

sequentially, but different transactions request locks asynchronously.

-i A transaction model in which read locks and write locks respectively are

requested in parallel is thus equivalent to our transaction model with

transaction size equal to two.

After being granted a lock request, a transaction waits for a

period of time before requesting another lock. The period of time is the

communication delay discussed previously. The average of the communica-

[. tion delay is fixed at one for all simulation runs, but the standard

" S deviation varies among different simulation runs. The simulation -

results can easily be scaled to whatever the actual average of the com-

munication delay may be.

%** % ;* **.,; . 2 Q ,

-47-

The multiprogramming level (MP) is fixed within a simulation run,

but varies among different simulation runs; thus the model is closed: a

new transaction is generated and started only after one compl.tes.

The access distribution to the database is random: every lockable

unit has the same probability of being accessed by a lock request. We "

use this uniform distribution because our previous study (Lin[2J) shows

that more concentrated distributions have the same results as the uni-

form distribution in heavier load.

Part of the findings concerning the relationship between the R/W

ratio and system performance of the first step simulation is presented

in the next section.

4.3 Simulation Results

We ran the simulation program many times with different values of

multiprogramming level, average transaction size, database size, stan- .9

dard deviation of communication delay, and R/W ratio. The table below

shows the input parameters and their values used in the simulation.

Ilnput Parameter [Values Used -

Itransaction size (TZ) I 4,16,32 I

Imultiprogramming level (MP)l 16,32,64 I

Idatabase size (DZ) I 4096,8192 [

IR/W ratio I 1/3,1l1,3/1 I -.

jstandard deviation of J0.573, 0.75.1.87,5.281Icommunication , '

Figure 4.0

We present only the results of the standard deviation of communication

delay of 0.75, because we found that the relationship between the R/W

ratio and the performance of the two phase locking does not change with

different standard deviation of communication delay (Lin[3]). Tables I

through 9 show the results, which are also rearranged and plotted in

Figures 4.1 through 4.7.

• . ; : . -.... -.{..... ;. -.. ... :... .* .-..-.-... :;- -.: .-.*:,: .? 2. --

-48-

In Figure 4.1 each point represents the probabilities of conflict

of update lock requests for two system configurations with same HF, TZ, O

DZ, and DV, but with different R/W. Different points of the figure

represent different configurations with different MF, TZ, DZ, or DV,

The X-coordinate represents the probability of conflict for the system

with R/W equal to 1/3, and the Y-coordinate the system with R/W equal

to 3/1. The points in the figure lie close to the diagonal line,

implying that the probabilities of conflict of update requests are the

same for each two configurations with different R/W ratio. The R/W

ratio has no effect on the probability of conflict of update lock

requests.

Figure 4.2 plots a similar graph for the probability of deadlock

of update lock requests, and the points also lie close to the diagonal

line. Thus the R/W ratio also has little effect on the probability of

deadlock of update lock requests.

These two observations contradict the intuition that higher R/W

ratio reduces conflict and deadlock for update transactions because of

more share locks and less exclusive locks in the system. To gain more

insight about this unexpected result, during each simulation run we

examined the locks outstanding in the system. We found that even

though the ratio of share locks to exclusive locks did increase with

higher R/W ratio, on the average the total number of locks outstanding

in the system at any time varies little with the R/W ratio. And the

total number of locks outstanding in the system determines the proba-

bility of conflict and the probability of deadlock of update requests,

S-because update requests conflict and deadlock with both read and update

lock requests.

Figure 4.3 plots a similar graph for the average blocking delay of

blocked update lock requests. The figure shows that the R/W ratio does

have an effect, though only a small one, on the blocking delay of

blocked update lock "equests. Specifically, the average waiting

decreases a little when the R/W increases from 1/3 to 3$1. Our results

(Table -8) show that with a higher R/W, read-only transactions complete

- slightly faster; thus update transactions wait slightly shorter for

blocking read-only transactions.

-49-

We have examined the effect of R/W ratio on the probability of

conflict and deadlock of update lock requests. Here, we examine how

that effect translates into system performance in terms of response

time. Table 4 shows the average response time of completed update lock

requests. The average response time includes time wasted due to tran-

saction abortion. Notice that if there is no blocking delay and tran-

"' saction abortion, then the average response time of update lock

requests must be one. The table shows that the only acceptable

response times occur when the average transaction size is four or the

load is less than 1%. The load is defined as the product of multipro-

gramming level and the average transaction size divided by the database

size. The table shows that within the acceptable range of transaction

*. size and system load, the average response time of update lock requests

varies little with the R/W ratio. This is expected because of the

invariance of the probability of conflict, probability of deadlock, and

blocking delay of update requests with respect to R/W ratio.

We next examine the effect of the R/W ratio on read-only lock c

- . requests. Similar to Figures 4.1 and 4.2, Figure 4.4 and Figure 4.5

plot the probability of conflict and the probability of deadlock of

read-only lock requests respectively. These figures show that higher

WR/ ratios reduce significantly both the probability of conflict and

.. the probability of deadlock of read-only lock requests.

Similar to Figure 4.3, Figure 4.6 plots the average blocking delay

of blocked read-only lock requests, and the figure shows that the R/W "'

ratio has little effect on the blocking delay of read-only requests.

* This occurs because blocked read requests wait only for update transac-

tions, and we have shown previously that the R/W ratio has little

effect on the response time of update transactions.

We have shown that a higher R/W ratio reduces the probability of

conflict and deadlock of read-only lock requests, but it has no effect

on their blocking delay. What does this mean in terms of the average

* response time of read-only lock requests? Table 8 shows the average 0

response time of read-only requests, indicating that acceptable'

response times occur when the average transaction size is 4 or the sys-

tem load is less than 12. Within this range of transaction size and

..-.- °............

-50-

system load, when the R/W increases from 1/3 to 31, the average

response time of read-only requests decreases only slightly.

This result is surprising because we have previously observed that

the probability of conflict and deadlock of tead-only requests

decreases significantly when the R/W ratio increases from 1/3 to 3JI.

But because the probability of conflict and deadlock is very small to

begin with when the transaction size and system load are within accept-

able range, the reduction in the probability of conflict and deadlock

does not improve significantly the response time of read-only requests.

We next examine the relationship between the R/W ratio and system

through-put. The results are shown in Table 9. The table shows that,

within the acceptable range of transaction size and system load, the

system through-put does not increase significantly, when the R/W ratio
increases from 1/3 to 3Ji,

To gain more insight, we did some time series analysis and found

that regardless of the R/W ratio in the incoming transaction stream,

the system is eventually saturated with mostly update transactions.

Figure 4.7 shows the time series of numbers of update transactions

active in a system with R/W ratio equal to 3/1 and multiprogramming

level equal to 64. The figure shows that the number of update transac-

tions active in the system is stablized at about 95% of the multipro-

gramming level, even though 75% of incoming transactions are read-only

transactions. This explains why the system does not perform much

better when the R/W ratio increases from 1/3 to 3J1, because the system

is clogged up with update transactions that complete slowly.

You might have noticed that the database sizes used are relatively

small compared to actual databases. But we have pointed out that the

results apply to systems with short transactions and moderate loads;

therefore the results apply to systems with larger database size,

because the larger the DZ, the lighter the load.

- .. , : -*.'- ' . ,' -.. .% .
' " ." -* "* 'o-* . " . .° -°" " . ' ' - . ' " .• - - ", 'o * * *

o

-° - * " % " "

A

-51-

4.4 Summary

We simulated two phase locking in various system and application

environments. We found that R1W has little or no effect on the proba-

bility of conflict and deadlock and the blocking delay of update lock

requests. In addition, the R/W ratio has little effect on the response ;

, .-. times of update lock requests.

We also found the R/W ratio has little effect on the blocking

delay of read-only transactions. However, we found that the R1/ ratio -

has significant effect on the probabilities of conflict and deadlock of

read-only transactions. Increase in R/W ratio significantly reduces the

percentage of probabilities of conflict and deadlock of read-only tran-

sactions. But if the average transaction size is small or the system

load is light, then this reduction in the probability of conflict and

deadlock reduces only slightly the response time of read-only lock

requests. And the overall system through-put is little effected by the

R/W ratio.

-o aql 2

° - ...

-52-

4.5 Ref erences

Bad~l] Badal, .. et al., "eA Proposal for Distributed Concurrency,
Control fo Patially Redundant Distributed Database System,
3rd Berkley Works h 1D istributed Data Maaemn AZJ

Beril] Bernstein, P.,.Goodman "Concurrency Control in Distributed
Database Systems" , ACM dompu init Surveys, Vol. 13, No. 2, June
1981.

Ell~l] Ellis C.A., "A Robust Algorithm for U at Dup licate Data-
bases: 2nd Berkeljyj Wokshop gn Distributed"Bt Mau aemen anj
Computer etors ay IV//.

Gar[l] Garcia-Molina, He, "Performance of Update Algorithms For Repli-
cated Data in a Distributed Database", Ph.D. Thesis, Dept. of

* Computer Science, Stanford University, June 1979.

*Linil] Lin6 W.K., "Performance Evaluation of Two Concurreuc~ Controls
Mcanisms in a Distributed Database System",*jj .2

tionl Coferece Management of DataL, Aprip"

Lint2] Lin W.K., J. Nolte, "Performance of Two Phase Lockin" 6th
Beriele Wokso on Distrbute Daa Maeemn and te
Networks, Feb. IVhl971952FPac if ic Grove,CA

Lin[3] Lin, W.K., et al., "Distributed Database Control & Allocation:
Semi-Annual Re ort" Technical Report, Computer Corporation of
America, Cambrigge, AA.

Lin[4] Lin, W.K., "Concurrency Control In a Multiple Copy Distributed
Database System," 4th Bekle- Wokso onDsrbue

*Management and Computer 1(etikrs Au.

*.Rie~l] Ries, D., "The Effect of Concurrency Control on Database Manage-
ment System Performance", Ph.D. Thesis, Electronics Research
Lab, Univ of Cal., Berkeley, 1979.

Ros~l] Rosenkrantz, D.J., et al., "System Level Concurrency Control for
Distributed$ Datatase Systems," ACM1 Trans. gn Datbase S~ystem

.5 Vol. 3, No. 2, June 1978.

Ste[l] Sterns, R.E., D.J. Rosenkrantz, et al. "Distributed Database '.

Concurrency Controls Using Before-Values, iarnQ-§'L IntegIM-
tional Conf ereonce on Manai ement _o Data, Apr il01 AM Aror,
MT

Sto~l] Stonebraker, Me, et al., "Concurrency Control and Consistency of
Multiple Copies *of Data in Distributed INGRES 'IEEE Trans. gn.
Software.Enzineering, Vol. SE-5, No. 3, May 1974.

Thail] Thanos C ,et al., "Performance Evaluation of Two Concurrency
Control Mechanisms in a Distributed Database System "etr

Notes in Copi~utr Science, editor G. Goo & J. ar tmanis,

Tho~l] Thomas R.H., "A Majority Consensus A pp roach to Concurrency Con-
trol for Multiple, Copy Database,"1 ACM Trans. 9n, Database Lyl-

*tems, Vol . 4, No. 2,June 1979.

. --. - - - - - - - - -

-53-

SETIN

Basic Timestamp, Multiple Version Tamestaup,

and Two Phase Locking*

Wente K. Lin

Jerry Nolte

A vesio of hispape apeare inthe hir Sem-anual echica
repot ofthe DB Cntro andAlloatio Proect

-54-

h5*j . °.

5. Basic Timestamp, Multiple Version Tiestamp.
and Two Phase Locking

Abstract

Using simulation, ve compare the performance of the basic times-
tamp, the multiple-version ti stamp, and the two phase locking con-
currency control protocols. We .find that in every system configuration
ve have simulated the multiple version timestamp protocol performs only
arginallzy better than the basic timestamp protocol. In addition, we

find that when the average transaction size is small, both timestamp
protocols outperform the tvo phase locking protocol. But when the aver-
age transaction size is large, the two phase locking protocol outper-
forms both timestamp protocols.

16:

[......

......
."..

-55-

5.1 Introduction

Many distributed concurrency control algorithms have been proposed

(Badl-., Ber[l], Ell[, Gar[li, Lin[3, RoeLl], Ste[l], Stoll],

U.Thol) But how well do they perform?

A few researchers have attempted to compare performance of dif- .O

ferent algorithms (Gar[l], Lin[l], LN[l], LN[21, LN[3], Munil], Rie[l],

Thatl), and only one of them studied the performance of timestamp pro-

tocols (Lin[lI).

These performance studies are very difficult to compare, and it is

almost impossible to integrate their results. They compare different

algorithms, and they make different assumptions about system and appli-

cation environments and employ different measures for system perfor-

mance. Therefore we began a major project that compared the principal

distinct distributed concurrency control and reliability algorithms,

using the same model, assumptions, performance (output) parameters, and

system and application (input) parameters. Some results of the project

-. . concerning the two phase locking have been reported in Lin[2], LN[I,

LN[2, and LN[3]. This paper reports some of the results of this pro-

ject that concern timestamp protocols.

In particular, this paper reports our findings about the perfor-

mance of the basic timestamp and the multiple version timestamp proto-

cols (Ber[l]), and about the comparison of their performance to the per-

formance of the two phase locking protocol. We found that, contrary to

our intuition, the multiple version timestamp protocol did not signifi-

cantly increase the throughput of read-only transactions over the basic

timestamp protocol; neither did it improve the throughput of update

transactions. We also found that both timestamp protocols performed

much better than the two phase locking protocol when the average tran- -1

saction size was small. But when the average transaction size was

large, the two phase locking protocol outperformed both timestamp proto-

* "cola.

This paper is organized as follows. Section 5.2 describes the

overall simulation model. Section 5.3 describes the specifics of the

basic tiestamp and the multiple version timestamp models. In addition,

the simulation results for these two models are discussed. Section 5.4

,--.1 -- - . .'-' -,- .: : : . -:. . ', ,,- : -: :i : . i. " - ' - - . . . -

•:.- : .. ." , . -.,,'. '. ,,,-.-. .". --. ,-,. ,-.. ..- ,. . . •. ..-. -..- •.. .- , ,. -.*,

-56-

discusses the simulation results of a modified model in which the ratio

of read-only transactions to update transactions is fixed inside the

system, instead of in the incoming transaction stream. Section 5.5 comn-

pares the two phase locking with the basic timestamp protocol, and Sec-

tion 5.6 concludes the study. Section 5.7 contains the references.

- - -o -. ,o

4 -57-

5.2 The Simulation Model

Performance of a concurrency control algorithm in a DBMS depends on

many aspects of the entire system. These include system characteristics

such as multiprogramming level (number of transactions running con-

currently), database size (number of data granules) and granularity with

which data can be locked or accessed, communication network, 10 devices,

memory size, CPU speed, number of nodes in the system, and distribution

of the data among these nodes. Performance is also affected by the

nature of the application - the transactions executed to read or update -

the database. Transaction characteristics include transaction size

- (number of data granules requested by each transaction), the frequency

- of local and remote requests for data, access distribution of the data-

base (probability of each data granule being accessed by a data
request), and whether the transactions only read data or update the-,.
database. Thus, to accurately evaluate the performance of a concurrency

control algorithm, we must include all these factors in the simulation

model, and this is too expensive to do directly.

To simplify the simulation, we model the system and transactions in

a highly functional model. Much of the detail of a real distributed

system is captured in a few parameters that are used as inputs to the

simulation model. This approach permits us to greatly reduce the number ___

of simulation runs necessary and the complexity of the model, while

retaining Aost of the impact that these details have on the performance

of the concurrency control algorithms.

We model a transaction as a sequence of data requests, each

requesting a data granule. The size of the data granule is irrelevant

in our model. Between two consecutive data requests, a transaction

incurs a delay called processing delay. The processing delay consists

of communication network delay, 10 delay, and CPU processing delay. . 5

Comunication network, 10 devices, and CPUs are not simulated in detail

in our model. Instead we use the processing delay as an input parameter

to our simulation model. For each simulation run, we assume the pro-

ceasing delay to have a certain probability distribution, but we vary

the probability distribution for different simulation runs. We use only

hypoexponential and hyperexponential distributions; therefore each dis-

tribution can be characterized by its average and standard deviation. . . -

• . ..',,-... .'- •

."-'--- - -'- . " --. . -- . ..'. '. " .. x. - .- .- .- ..- ' .• -. - . ,

-58-

Since the processing delay (consisting of communication network

delay, 10 delay, and CPU delay), is an input parameter and is modeled by

an abstract probability distribution function, we make no assumptions

about the characteristics of the underlying communication network, 10

devices, and CPUs, and their relative performances. In fact, communica-

tion networks and 10 devices that have different performance charac-

teristics are modeled by different distribution functions. For example,

a distribution function that has small standard deviation models a high

-". bandwidth or a lightly loaded system, while a distribution function that

has large standard deviation models a low bandwidth or a heavily loaded

syst em-*

Besides processing delay, input parameters of the simulation model

include average transaction size (TZ), multiprogramming level (MP),

database size (DZ), ratio of read-only transactions to update-only tran-

sactions (K/W) entering the system, and access distribution to the data- - -

base.

We did not explicitly include the frequency of local and remote

*. data requests as an input parameter because it is captured by the proba-

bility distribution of the processing delay. For example, a system that

executes mostly local data requests can be modelled by a distribution

that has a small mean value. Neither did we include the data granular-

ity as an input parameter, because the data granularity is a function of

the database size and the transaction size. Increasing the granularity

is equivalent to decreasing the database size and the transaction size.

Moreover, we simulated only random access to the database. Every data

granule has the same probability of being accessed by a data request.

We used this uniform distribution because our previous study (LN[Il)
showed that more concentrated distributions had the same results as the

uniform distribution in heavier load. The details of these input para-

eters follow.

We simulated two kinds of transactions, read-only transactions and

update transactions, and the R/W ratio determines their ratio in the

incoming transaction stream fed to the simulation system. -0

Transaction size is assumed to be exponentially distributed with

% mean TZ. The mean TZ varies among different simulation runs, but

-59-

remains fixed within a simulation run. We model a read-only transaction

as a sequence of read requests, and an update transaction as a sequence 0

of read requests (with intention to update later), followed by parallel

update requests (each requesting only one data granule). Thus in an

update request, we require that each data granule be read before it is

updated. We assume that an update transaction has two phases: a read S

phase and a write phase. During the read phase, an update transaction - .-

issues a sequence of read requests, and during the write phase all

updates are committed in parallel into the databases. This model is

general enough to include all transaction types of interest. For exam- ,

ple, to model a pure update transaction (one that does not read from the

database) there will be only the write phase. To model transactions in

which read requests are issued in parallel only once, the read phase

will issue only one read request.

After being granted a data granule, a transaction waits for a

period of time before requesting another granule. This period of time

is the processing delay discussed previously. The average of the pro-

ceasing delay is fixed at one for all simulation runs, but the standard

deviation varies among different simulation runs. The simulation

results can easily be scaled to whatever the actual average of the pro-

ceasing delay may be.

The multiprogramming level (HP) is fixed within a simulation run,

but it varies among different simulation runs; thus the model is closed

and a new transaction is generated and started only after one completes.

Performance measures (output parameters) of the simulation model

include probability of restart, system throughput, and others that will

be mentioned when specific models are discussed.

Part of the results of the performance of the basic timestamp and

multiple version timestamp protocols are presented in the following sec-

tions.

4 *. -O

.. . .-. * -

1.,,,, .o,

-60- A

5.3 Basic Timestamp vs Multiple-Version Timestamp

In this section, we first describe the specifics of the basic 0

timestamp and the multiple version timestamp models, and then we discuss

the simulation results. Much of the detail of the protocol can also be

. found in Beril]. We describe the basic timestamp model first.

We assign a unique timestamp (drawn from the system clock) to each

% transaction when we initiate the transaction. We keep a read timestamp

and a write timestamp with each data granule of the database. The read

timestamp and the write timestamp record the timestamps of the last

transactions, reading and writing respectively the data granule.

To synchronize an update transaction, during the read phase the

timestamp of the update transaction is compared with the read and write

timestamps of each data granule read. If the timestamp of the update

transaction is smaller than the read timestamp, the update transaction

is restarted immediately to avoid aborting it later when it tries to

commit (since we never abort read-only transactions). If the timestamp

of the update transaction is smaller than the write timestamp, then the 4A 4

update transaction is also restarted because it tries to read the data

granule after a transaction that has a greater timestamp has updated the

data granule. If the timestamp of the update transaction is larger than

both read and write timestamps of the data granule, then it replaces the

read timestamp of the data granule and the update transaction continues.

- - During the write phase, the timestamp of the update transaction is again
. compared to the read and write timestamps of each data granule updated.

If the timestamp of the update transaction is smaller than the read

timestamp, the update transaction is again restarted. But if the times-

tamp of the update transaction is smaller than the write timestamp, the

write operation is ignored. If the timestamp of the update transaction

is larger than both the read and write timestamps of the data granule,

the write timestamp of the data granule is replaced by the timestamp of

the update transaction. If T(t) represents the timestamp of transaction

t, and R(x) and W(x) the read timestamp and write timestamp of data

granule x, the protocol can be summarized as follows. During the read

phase of an update transaction t,

for each x read by t,

if T(t)<R(x) -- > restart t;

6- -. .. .; -:

-61-

if T(t)<W(z) -> restart t;

if T(t)>R(z) & T(t)>W(x) -> replace R by T, read proceeds.

And during the write phase of an update transaction t,

if T(t)<R(x) for any x updated by t -> restart t;

"-'i else for each x updated by t,

if T(t)<W(x) -> update to x is ignored,

if T(tl>W(x) --> replace W(x) by T(t), commit the update.

To process a read request from a read-only transaction, we compare

its timestamp with the write timestamp of the data granule. If the

write timestamp of the data granule is larger, then the read-only tran-

saction is restarted; otherwise the read-only transaction continues, and

the read timestamp of the data granule is replaced by the timestamp of

the read request if the latter timestamp is greater than the former. In O-.

summary,

T<W -> restart

T>W -> read-only proceeds, and replace R by T if R<T.

Performance measures of the model include system throughput (number .

of requests completed per time unit) and the probability of restart for

both read requests of read-only transactions and read requests of update

transactions during the read phase. Since in the case of timestamping

protocols, an update transaction may progress to the write phase and

then conflict and abort, we also include the probability of restart of

transactions (not data requests) during the write phase.

The multiple version timestamp model is very similar to the basic

timestamp model. System and application parameters, and conflicts

between data requests and data timestamps, were dealt with in the same

* 2 way. However, in the multiple version model, we kept four read and four

write timestamps for each data granule; the first one is the smallest

and the fourth one the largest. However, because we did not simulate

computation within each transaction, we did not keep the data values

corresponding to the four write timestamps for each data granule. A

read-only transaction can access earlier versions of the data if the

timestamp of the read-only transaction is smaller than the largest write

timestmp of the data granule to be accessed. But because we require an

update transaction to read first what it writes, an update transaction

....... -..." '...-......" .".-......-. ...

*. . ..': ''L: " .. . ,, .. .- I . . -..... ,.. .-..-. ,., - ., . ._

-62-

can only read the latest version; if the R/W ratio is zero, this model

degenerates to the basic timestamp model. For this reason, we did not

simulate any system configuration with R/W equal to 0.

Since the probability of restart for read-only transactions is

already small in the single version basic timestamping protocol, and

since the number of versions does not affect the probability of restart

for update transactions, we decided not to vary the number of versions.

We compare the simulation results of both the basic and the multiple-

version timestamp protocols in the following.

We first examine the probability that a read request (both read-
only request and request of update transaction during the read phase)

will conflict, resulting in the restart of its transaction. Figure 5.1

and Figure 5.2 respectively show these probabilities for the basic and

the multiple-version timestamp protocols. We note that because read-

only transactions never restarted in the multiple-version timestamp

model, Figure 5.2 contains only data for update transactions during the

read phase. We note also that, for some of the heavy load cases, the

system thrashed and never stabilized; therefore the data are not reli-

able. However, they do qualitatively indicate what is happening. Com-

paring these two figures, we find very little difference between the

basic timestamp and the multiple-version timestamp protocols in the pro-

bability of restart during the read phase.

We next examine the probability of restart of update transactions

during the write phase. Figure 5.3 and Figure 5.4 show the results for

the basic timestamp and the multiple-version timestamp protocols, and S

the difference between the two figures is very small.

For the basic and the multiple-version timestamp protocols, Figure

5.5 and Figure 5.6 show the system throughput, which is the number of

completed (excluding those aborted) data requests per time unit. Notice

that the average processing delay is always one and that there are

always MP transactions running in the system; therefore if there is no

transaction abortion, the throughput must equal MP, which is the maximum

possible-throughput. Combined read-only and update throaghputs for sys-

tem configurations that have average transaction size equal to 4 are

within 10 of maximum possible. But combined throughputs of system con-

i i
= ,- -

-63-

figurations that have average transaction size (TZ) larger than 16 are

less than 30Z of the maximal throughput. .

These two figures show system thrashing when the averagc transac-

tion size is large or the system load is heavy. If the &ystem is in

equilibrium, write throughput should be very nearly 1/3 of the read

throughput, since incoming trLnsactions occur in that ratio. However,

this is not true for TZ-32, or for TZ=16, MP-32 and 64. In these cases,

the system thrashed and was jammed with long update transactions that

never finished. These observations show that both timestamp protocols

perform extremely poorly during long transactions or while bearing heavy

loads.

When we compare Figure 5.5 with Figure 5.6, we find little differ-

ence between these two protocols in throughput except when the transac- rc0

tion size (TZ) or the system load (TZxMP/DZ) is large, in which case the

throughputs are extremely low and the statistics are not reliable any-

way.

From the observations of this section, we can conclude that both

protocols perform poorly when the average transaction size is large or

when the system load is very heavy. In addition, there is no signifi-

cant difference in performance between the basic timestamp and the mul-

tiple version timestamp protocols. More versions of data do not improve

significantly the throughput of read-only transactions. When the load

is light, the probability of conflict for read-only transactions is very

small, therefore more versions of data do not increase the read-only

transaction throughput. When the load is heavy, the system is jammed

with long update transactions that never finish, thus locking out read-

only transactions; therefore more versions of data do not help either.

One may argue that if we do not allow the system to be saturated .

with long update transactions, then the multiple-version timestamp pro-

tocol should perform better than the basic timestamp protocol. We will

test this argument in the next section.

%.7

-' ~..........:-"""": ' '" . °- "' . . .',

-64-

5.4 Results of a Modified Model

In the last section, we concluded that there is no significant

difference between basic timestamp and multiple-version timestamp proto-

cols in performance, including the throughput of read-only transactions.

One may argue that this conclusion is not valid because the simulation

model should not have allowed update transactions to jam the system,

thus locking out read-only transactions.

To test this argument, we impose the R/W ratio limitation inside

the system, instead of in the incoming transaction stream: that is, the

ratio of the number of running read-only transactions to the number of

"* running update transactions is always fixed at R/W. All other parame-

ters of the model remain unchanged. The results are shown in Figures

5.7 and 5.8 for the basic and multiple-version timestamp protocols

* . respectively. We include in the figures data from the previous model

for comparison. These data are marked by *•

Comparing the data of the modified model to the data of the previ-

ous model, we find that by fixing the R/W ratio inside the system,

instead of in the incoming transaction stream, the throughputs of read-

- * only transactions increase tremendously when the average transaction

size (TZ) is large. The reason is that when the R/W ratio is fixed

inside the system, the system can no longer be saturated with long 01

update transactions that never finish. But when the average transaction

size is small, fixing the R/W ratio inside the system does not increase

significantly the throughputs of read-only transactions. The reason is

that the system is never saturated with long update transactions in the

first place.

When we compare Figure 5.7 with Figure 5.8, we find no significant

difference between the performance of the basic timestamp protocol and

the multiple-version timestamp protocol. This contradicts the earlier .

argument that if the R/W is fixed inside the system instead of in the

incoming transaction stream, the aitiple-version timestamp protocol

should have higher read-only transaction throughputs than the basic

timestaml protocol.

The reason for this surprising result is that both timestamp proto-

cols favor read-only transactions. Whenever there is a conflict between

.............-.-.

-65-

an active read-only transaction and an active update transaction, both

protocols abort the update transaction. In both protocols, an active

read-only transaction is aborted only if it conflicts vith a completed

update transaction that has a later timestamp, and this occurs rarely

because update transactions take much longer to complete. Since read-

only transactions rarely get aborted in the basic timestamp protocol,

more versions of data make little difference in read-only transaction

throughput.

W

.-

V..-
1....

-SO

• 1

: .: -o..................

-66-

5.5 Timestamp Vs Locking ".

In this section we compare the performance of the basic timestamp .

protocol with the performance of the two phase locking protocol.

The simulation model for the two phase locking (LN[I], IM[2],

LN[3]) is similar to the timestamp model except that the two phase lock-

ing is substituted for the basic timestamp protocol. We show part of - -

the simulation results, specifically the throughput, in Figure 5.9. The

unit of the throughputs is the number of data requests completed per

time unit, excluding requests aborted.

Comparing Figure 5.9 with Figure 5.5, we find that when the average

transaction size (TZ) is small, the basic timestamp protocol outperforms

the two phase locking protocol. But when the average transaction size

is relatively large (TZ larger than 16) the two phase locking outper-

forms the basic timestamp protocol.

To learn why the timestamp protocol outperforms the two phase lock-

ing when the average transaction size is small, we examined our previous

simulation results on the two phase locking protocol ([Lin2], [NLI],

[NL2]). We found that, in the two phase locking protocol, blocked tran-

sactions tend to wait for long transactions, even when the average tran-

saction size is small. Sinc: long transactions take long periods of

time to complete, blocked transactions tend to wait for long periods of

time. On the other hand, Figure 5.1 shows that when the average tran-

saction size is small, the probability of the basic timestamp protocol

restarting a transaction is very small. Therefore we conclude that when

the average transaction size is small, restarting transactions in the

basic timestamp protocol is better than blocking transactions in the two

phase locking protocol. But the reverse is true when the average tran- . -

saction size is large, because in the timestamp method thrashing is a

serious problem: many transactions are constantly aborted and never fin-

ish.

We must caution that this result must be taken in the context of

our simulation model assumption. In our model, we do not simulate -.

queueing for CPU, 10 devices, and communication lines. Queueing for

these devices is captured in a single model parameter, the processing

delay, which has an erlangian distribution. To validate the conclusions

. . - .- - . .- , . .- - ,, ,. . - .- , .- , ., - - , , . -. •- , • .. - , ", - . ,

.4
-67-

in a more detailed model, we are currently modeling explicit queueing

for these devices. Our preliminary results from the more detailed model

seem to reaffirm the conclusions. j

a/=.

4A

its1
-' -

-68-

5.6 Conclusions

We come to three major conclusions concerning the performance of 0

timestamp concurrency control method.

First, over a wide range of system conditions, the multiple version

timestamp method performs only marginally better than the basic times-

tamp method. When the average transaction size (TZ) is small, read-only

transactions complete quickly and rarely conflict with younger update

transactions that have completed; therefore more versions of data help

only marginally. When the average transaction size is large, the system

is jammed with update transactions, and few new read-only transactions

can start; thus more versions of data do not improve the throughput of

read-only transactions either. When we fixed the R/W ratio inside the

system to prevent the system from being saturated with update transac-

tions, the multiple version timestamp protocol still performs only mar-

ginally better than the basic timestamp protocol, because read-only

transactions complete quickly and rarely conflict with younger transac-

tions that have completed. -Ar

The second conclusion is that when the average transaction size

(TZ) is small, the basic timestamp protocol outperforms two phase lock-

ing protocol. But when the average transaction size is relatively

larger, the two phase locking protocol outperforms the basic timestamp

protocol.

The third conclusion is that when the average transaction size is

small, fixing the atio of read-only transaction to update transactions 'Fir.

inside the system does not improve system performance. But when the .

average transaction size is relatively large, fixing the R/W ratio ..-

inside the system significantly improves the throughput of the system,

OZ because this prevents the system from being saturated by long update

transactions. This amounts to giving read-only transactions higher

priority to enter the system; since read-only transactions complete fas-

ter, they also enter faster.

But we caution that these conclusions be taken in the context of

the simulation model assumptions. Currently we are altering some of the

assumptions to see whether these conclusions remain true, and prelim-

inary results seem to indicate that they are.

,,...,. , ,./.,,,~~~~~~~~~~~.......... :,..,:...,..,

-69-

5.7 Ref erences

U Bad1J1 Badl D.Z., et al., "A proposal for Distributed Concurrency Con-
trol for Partially Redundant Distributed Database System,3r
Bi~eeWrkshonkD Mg Distributed Data Management and Computer Net-

Ber~l] Bernstein, P., N. Goodman, "Concurrency Control in Distributed
Database Systems," ACM.Comouting Survey, Vol. 13, No. 2, June 1981.

Ell~l] Elli C.A., "A Robust Alg orithm for Updatin Du licate Data-
basne ' 2a eklyWrso nDistriuted ata Knagmn t and
Compute 1wor s, mylI//

Gal[1] Galler, 1.1., Ph.D. Thesis, University of Toronto, 1982

KGar[1J Garcia-Molina, li? "~Performance of Update Algorithms For Regli
cated Data in a Distributed Database ' "Ph.D. Thesis, Dept. of Com-
puter Science, Stanford University, June 1979.

LUntil Lin, U.K., "Performance Evaluation of Two Concurrency Controls
Mechanisms in a Distributed Database Sys tem," Sia mod-Si Interna-
tional Conference M2! Management ofJ Daa April 195r7Anifh orI

Lin[2J Lin U.K., et al., ,"Distributed Database Control & Allocation:
Semi-AXnnual Report," Technical Report, Computer Corporation of
America, Cambridge, MA.

Lin[3] Lin, U.K., "Concurrency Control In a Multiple Copy Distributed
Database System," Ajh Berkl!I Woksop g Distributed Data
M&ananment and ComputeiNeT__ors'Aug. 199

LN[1j Lin, U.K. J. Nolte, "Performance of Two Phase Locking," 6th
Berklevkorksho i isriute Data Maagement and Computer N-et-

N2L.J., Yeb.10-19 192Paic Grove, A

LN[2] Lin,, W.K., J. Nolte, "Read Only Transactions and Two Phase Lock-
ma, 2 d S sium on Relifiility in Distributed Software and

LN[3] Lin U.K., J. Nolte, "Communication Delay and Two Phase Locking," -

rdtiorina Cojernce on Distributed Computing Systems, Oct.
1-2,15, Fort Ladrale L

Rie[1] RiesA D., "The Effect of Concurrency Control on Database Manage-
ment ystem Performance " Ph.D. Thesis, Electronics Research Lab,
Univ . of Cal., Berkeley, 1979.

-. Rostli Rosenkrantz D.J. et al., "System Level Concurrency Control for
Distributed batabase Systems," ACM Tran on Database System, Vol 3, .
No. 2, June 1978

Ste[1 Sterns, R.E., D.J. Rosenkrantz, et al., "Distributed Database
Cocurrency Controls Using Before-Values "Siamod-81 International
Conference _9_ Management of Data, Api 1481 Hin ATor, l

Stoll] Stonebraker, M., et gal., "Concurrency Control and Consistency of
Multiple Copies *of Daain Distributed INGRES,' IEEE Tran on
Software Enitineering, Vol SE-5, No. 3 May 1979.

Thall] Thanos, C., It al., "Performance Evaluation of Two Concurrency
Control Mechanisms in a Distributed Database S yst em " Letr Nqtes

CompterScience, Ed. G. Goo & J. Hartmanis, gpringer-Yer lag,

Tho~l] Thomas, R.H.1 "A Majority Consensus Approach to Concurrency Con-
trol for Multiple Copy Database$" ACM Transaction On Database Sys-

~j;Vol 4, No. 2, June 1979.

-70-

read-only transact on read-only trn sacto
DZ -4096, R/W M3/ DZ -8192, RjIW T3/

)APITZ 4 16 32 MP/TZ 4 16 32

16 0.0016 0.0031 0.0013 16 0.0011 0.0015 0.0014
32 0.0030 0.0026 0.0017 32 0.0015 0.0021 0.0011
64 0.0049 0.0027 0.0024 64 0.0029 0.0021 ___

------------- ----------------------

* write trans ction write trans ction - C
DZ 4096, RJW -3/1 DZ - 8192, RNw -3/1-

IIP/TZ 4 16 32 MP/TZ 4 16 32

16 0.0063 0.0236 0.0244 16 0.0033 0.0165 0.0177
32 0.0117 0.0329 0.0339 32 0.0067 0.0244 0.0254
64 0.0239 0.0452 0.0456 64 0.0121 0.0337 ___

MPITZ 4 16 32

16 0.0065 0O.0238 0.0248
32 0. 0127 0. 0333 0. 0342
64 0.0227 0.0455 0.0458

Figure 5.1
Average Probabilie y of Restart at Read phase

Stadar Deiatonof Processing Delay -0.528

7 -77 77 77 --- *

-71-

Ujdate Trans4 ction Update Trans ction
D 4096, R/W - 3/1 DZ 192, R7W - 3V)

MPITZ 4 16 32---- MP/TZ 4 - 16 3i.

16 0.0063 0.0240 0.0247 16 0.0040 0.0165 Odt,,7()
32 0.0121 0.0339 0.0343 32 0.0077 0.0242 0.0255
64 0.0232 0.0453 0.0459 64 0.0126 0.0338 0.0346

Udate Transact ion

NPITZ 4 16 32
16 0.065 0.0238 0.0248 -
32 0.0127 0.0333 0.0342
64 0.0227 0.0455 0.0458

Figure 5.2
Average Probability of Restart at Read Phase

(Multiple version TS)
*.Standard Deviation of Communications Delay -0.528

-72-

UVdte Trans, ction Uidtrns, ction
406 R D/ 8192, W - 3/1

NP/TZ 4 16 32 PPTZ 4 16 32

16 0.033 0.270 0.578 16 0.016 0.190 0.4702
32 0.050 0.459 0.785 32 0.027 0.138 0.6149
64 0.079 0.672 0.886 64 0.049 0.476 ___

---- ---- - --- ---

UVate Transection
DZ 4096, R/W 0

NP/TZ 4 16 32

16 0.031 0.296 0.64 8
32 0.049 0.462 0.91
64 0.083 0.834 0.94

Figure 5.3
Average Probabilityo Resatirt at Write Phase

I Bafsic 8S
Standard Deviation of Processing Delay -0.528

NOZ

* . .

-73-

HPITZ 4 16 32 KPITZ 4 16 32

62 2 0.267 0.476 16 0.014 0.165 0.433
64 0.08 0.510 0.695 32 0.031 0.310 0.629

64 0000.684 0.873 64 0.048 0.523 0.768

URdate Transact ion
D ---- 6,RIW 0

)APITZ 4 16 32
16 0.031 0.296 0.64
32 0.049 0.462 0.91
64 0.083 0.834 0.94

Figure 5.4
Average Probtability of Restart at Write Phase
Standardu Dei ti e version TS
Standrd Dviat oo Comimunications Delay -0.528

A

42

-74-

Read-Only Tr asactjon Read-Only Tr nsact;'on
DZ -4096, R1W m 31 DZ - 8192 , 1/U - 3/1

NPITZ 4 8 16 _32 MP/TZ 4 8 16 32

16 11.60 7.30 3.67 0.90 16 11.84 8.6 5.89 1.65
32 23.21 11.80 3.29 0.43 32 23.04 14.4 6.17 1.06
64 42.82 14.90 1.61 0.15 64 45.50 24.5 5.12

idt rnction Update Transaction
D 9, W-3/1 DZ -8192, R/W - 3/1

MPTZ 4 8 16 32 IP/TZ 4 8 16 32

*.16 3.72 2.34 1.25 0.23 16 3.96 2.88 1.98 0.44
32 7.57 3.85 0.93 0.10 32 7.64 4.78 1.9 0.29
64 13.80 4.80 0.42 0.03 64 15.29 8.23 1A5

Ui~eTrans, ction
D 409, R7 - 0

MPITZ 4 16 32

16 14.15 1.14 0.13
32 26.24 0.97 0.03
64 44.19 0.09 0.01

Figure 5.5
Through-put in Requests per Time Unit 7'-4

(Basic TS)
Standard Deviation of Processing Delay -0.528

-75-

Read-Only Transaction Read-Oni Transaction
DZ - 8192, R/W - 3/1 DZ -891;21 R1W - 3/1

MPITZ 4 16 32 IPITZ 4 16 32

16 11.8 3.6 1.3 16 11.6 5.7 1.6
*32 23.2 1.8 0.4 32 23.2 6.6 1.2
*64 43.5 1.6 0.3 64 46.0 4.5 1.0

Ujdate Transection Update Transa tion
DZ 8 892, R/W - 3/1 DZ -89192, MrW- 3/1

HPITZ 4 16 32 HPITZ 4 16 32

16 4.0 1.14 0.33 16 4.0 1.93 0.53 ~
32 7.8 0.56 0.08 32 7.5 2.19 0.31
64 14.4 0.39 0.07 64 15.2 1.28 0.21

-pat ---- W -- - -
Udate Trans, ction

HP/TZ 4 16 32

16 14.15 1.14 0.13
32 26.24 0.97 0.03
64 44.19 0.09 0.01

Figur~e 5.6 AN
Through-p ut ii Requests per Ti.me Unit

(Multi pie Versios TO)
Standard Deviation of Communications Delay -0.528

-76-

RIW DZ TZ HP Read-Only Update Probability Probability Probability

Read-Only) Update During Update During
Read-Phase) Write-Phase)-hr--u -h ---------- -Put-Re-tr--of-Rstart-o-Restar

3/ 8a9e as 16 10.7 4.8 .0007 .0040 .0164
sm asabove 11.8 4.0 .0011 .0033 .0160

3/1 8192 4 64 47.0 13.3 .0021 .0147 .0485
*same as above 45.5 15.3 .0029 .0123 .0490

*3/1 8192 16 16 10.3 1.17 .0008 .0379 .1907
*same as above 5.89 1.98 .0015 .0165 .1900

*3/1 8192 32 32 22.9 .044 .0001 .0250 .8140
*same as above 1.06 .290 .0011 .0254 .6149

*results of the model with W/R ratio fixed in the input stream

Figure 5.7
Bjsic Tiimestamp Model

with R/W Fixed Inside the System

-77-

R/ D T P ea-Ol Udae Probability Probabilit Prai t

ThIWPu DZ Z u-Put of Restart of Restar d of Restartt
(Read-Only) Update Dur .ng Update During

Read-Phase) Write-Phase)'

311 8192 4 16 10.9 4.59 0 .0039 .0150
*same as above 11.6 4.00 0 .0040 .0140

3/1 8192 4 64 46.6 13.4 0 .0134 .0494
*same as above 46.0 15.2 0 .0126 .0480

3/1 8192 16 16 10.9 1.62 0 .0147 .1890
*same as above 5.7 1.93 0 .0126 .1650
----- ---

3/1 8192 32 32 22.9 1.69 0 .0240 .5370
*same as above 1.2 0.31 0 .0255 .6290

*results of the model with R/W fixed in the input stream

Figure 5.8
Muliple Version Timestamp

With RW Fixed Within the System

N.0

re -78-

Read-Only Throuih-Put Read-Only Through-Put
DZ-4O96 * R/W-3/I DZ-8192 R/W"'3/1

NMPITZ 4 16 32 MP/TZ 4 16 32

16 8.90 5.01 3.04 16 9.46 8.04 4.29
32 16.18 5.18 2.04 32 17.67 9.26 3.56
64 26.50 3.62 1.35 64 33.18 6.64 2.45

--- -- - - -- - -- - - - - -

Update Through-Put Update Through-Put
DZ-4096, R/2-3/1 Dz-8192, RIW"311

HMP/TZ 4 16 32 HP/TZ 4 16 32

16 2.89 1.73 0.92 16 3.04 2.65 1.43
32 5.34 1.71 0.63 32 5.80 3.05 1.19
64 8.82 1.23 0.48 64 11.02 2.13 0.876

Update Through-Put
DZ-8l92p Ri WiO

HPITZ 4 16 32

16 11.79 7.07 3.61
'Rp,32 21.51 6.69 2.98

64 36.30 5.14 2.04

Figure 5.9
Through-Put of Tvo Phase Locking

Ah.

7- 79

-79-

SECTION VI

Performance of Distributed Concurrency Control*

Wente 11. Lin
Jerry Nolte

A7 veso of this p erappeared in the Distributed Database System
DesinersHandook preared fortheDBCot lan AlctinP -

ject..

- I- j 4-1.--°°W .T * ,V -]- ~ '

"0" -80- -.

6. Performance of Distributed Concurrency Control
, / 4. ,. -. .

6.1 Introduction
W0

Many factors effect the performance of a distributed concurrency
algorithm:

1. 10 delay,

2. communication delay,

3. ratio of read-only to write transactions, O

- 4. database size, transaction size,

5. system multiprogramming level,

6. distribution and replication of the database,

7. overhead of deadlock detection, kO

8. and system load, defined as the product of transaction size and mul-
:- tiprogramming level divided by the database size.

Our simulation study of the performance of distributed concurrency con-

i trol algorithms shows that four of these factors have more significant

. .impact than the others: 10 delay, communication delay, transaction size,

and system load. Hence we divide our simulation results into groups and

discuss them separately by classifying the system environment as either

IO-bound or communication bound, and as either short transaction loaded

or long transaction loaded. We consider a system to be 10 bound if

. queueing for 10 or CPU resources is a more significant problem than

queuing for communication channel; and we consider a system to be com-

munication bound if queuing for communication channel is a more signifi-

cant problem than queuing for 10 and CPU resources. We consider a sys-

tem to be short transaction loaded if the average number of data items

requested by the transactions (or transaction size) is less than 0

of the database. The system is long transaction loaded if the average

is larger than 0.2 of the database. If the average is between 0.05%

and 0.2% of the database, the classification of the system as short

transaction loaded or long transaction loaded depends on the system

load. Details of the classification can be found in Figure 6.1.

Thus we present four categories of system environments: short transac-

tion loaded and 10 bound (SIO), short transaction loaded and communica-
tion bound (SCM), long transaction loaded and 10 bound (LIO), and long

-,. - , ' , ' ' - ,- .. - - , . - - * .*. - - , -. - "~.,: .K -*.. , . . . ,. - ,. . . .- , . - .. . ,

-7. -7 7. 7- 7. 7

---------- --------- 9
r ystem Load < 10 > 10-'-" Trans Size -

< 0.05% Short Short
0.05%<0.2% Short Long
> 0.2% Long Long

Trans Size: Average number of data items requested by a transaction as

a percentage of the database size.

System Load: Trans Size multiplied by the multiprogramming level.

Database Size: Total number of data items in the database.

. Figure 6.1 System Classification
(Short Loaded or Long Loaded)

transaction loaded and communication bound (LCM). For each of these

four environments, ye compare the performance of various concurrency

control algorithms, taking into consideration the factors that are not

used to classify the system environment -- i.e. multiprogramming level,

ratio of read-only to write transactions, distribution and replication

of the database.

We first describe, in Section 6.2, the distributed DBMS model that

we use to evaluate these algorithms. We then define and describe, in

Section 6.3, the concurrency control algorithms that we evaluate. We

compare these algorithms in Section 6.4.1 through 6.4.4 for each of the

four environments. In Section 6.5 ye summarize the results of Section

6. Details of the simulation results can be found in the Appendix.

To use this section as a design guide, a system designer must first .V-O1

- classify his system environment, using the following three parameters.

. First, he must decide whether his system environment is 10 bound or com-

"" munication bound. Second, he must estimate the average number of data

items, as a percentage of the total number of data items in the data-

base, requested by a transaction (transaction size). Third, he must

estimate the average system load, which is the product of the transac-

tion size and the multiprogramming level of the system (number of tran-

sactions running concurrently). Using these three parameters and Figure -.

6.1, the-designer can find his system classification. For each classif-

ication, he can find the comparison of various distributed concurrency

control algorithms in Section 6.4.1 through Section 6.4.4.

- - -. ..- -- . -? ' . - -" - /

'. *- - - - - - - - -

w- ""-- " 7 7 - P V

-82-

6.2 Performance Model

We assume that there are two kinds of transactions: read-only tran-

sactions and write transactions (update transactions). Write transac-

tions always read what they write, and write what they read. This

assumption may seem restrictive, but it is a good approximation of real

applications. Our earlier simulation results [LIN81a] showed that the

total number of requests and the ratio of read-only requests to write

requests active at any moment in the system have much greater impact on

the system performance than the ratio of read-only to write transac-

tions. Moreover our analysis shows that a more general assumption of

transactions would not favor any concurrency control algorithm; thus for

performance comparison of the algorithms, this assumption would not dis-

tort the results. To use the results of this section to evaluate the

performance of a system that has transactions reading more than writing,

the ratio of read-only to write transactions in the system can be

adjusted upward.

A read-only transaction consists of a sequence of read-only

requests, and each request reads a data item. A write transaction con-

sists of a sequence of write requests (update requests), followed by a

two-phase commit. Requests from a transaction are processed sequen-

tially; another request is initiated only after the previous one has !"7

been successfully processed.

As previously described, a distributed DBMS consists of TMs,

schedulers, and DMs. Each transaction is managed by a TM, which

sequences its requests and sends them to the appropriate scheduler to be

processed. If the scheduler site is different from the TM site, a com-

munication delay is incurred.

If a request is read-only, the scheduler requests a read lock for

the requested data item (assuming that a two phase locking algorithm is

used). Depending on the particular concurrency control algorithm used,

some lock managers may grant the lock without checking whether the

request conflicts with another transaction. Other lock managers may

check for the conflict. If a conflict is found, the read-only request

waits and incurs a blocking delay. Depending on the concurrency control

algorithm used, the scheduler may initiate a deadlock detection when

,~~~~...-.-.- .-.

_- • - ., -• • , ... * . . . - . - . • -

-83-

blocking occurs, thus incurring processing and possibly communication

Uoverhead.' When the lock for the requested data item is obtained, the0

scheduler sends the read-only request to the appropriate DM, and the

" "" read-only request incurs a processing delay. A read-only transaction

ends after all its requests have been successfully processed.

A write request is processed in a manner similar to a read request,

except that successful processing of all write requests of a transaction

is always followed by a two-phase commit, and a write transaction ends

after the two-phase commit is successfully processed (two-phase commit

is the only reliability algorithm that we use in our simulation of con-

currency control algorithm).

If timestamp based algorithms are used, a timestamp is assigned to

each transaction, and requests from the transaction inherit the transac-

tion timestamp. Each data item also has read and write timestamps that

record the timestamps of the transactions that last read from (or write

into) the data item. For all the timestamp algorithms that we have --

evaluated, the scheduler always resides at the site of a DM, and a

request is always sent to the scheduler at the site where the data is to

be accessed. When a scheduler receives a request, it compares the

timestamp of the request with the read and write timestamp(s) of the

data item, and it may or may not delay the request, depending on the

particular algorithm used. If the request is not blocked, it is sent to

*"' the DM at the scheduler site, and the request incurs a processing delay.

We simulate both 10 bound and communication bound system environ-

* *ments. In the 10 bound environment, we explicitly simu,.ate queuing for

local processing, which combines cpu and 10 processing. We differen-

tiate between local processing of simple messages, such as lock request,

lock release, and deadlock detection, and local processing of data

requests. The latter needs more processing time than the former. In

the 10 bound environment, we do not simulate queuing for communication

channels. Communication delay is simply simulated by a delay drawn from

a probabilistic distribution. -- 9'

In the communication bound environment, we explicitly simulate

queuing for communication channels, but not for local processing

resources. In some, cases, we differentiate between message and data

-" " ."- " - - •- .. " • / . . . " "" . "..',""." ".',, "', .- - - 4 4

-- -84-

transmission. The latter takes longer than the former. We simulate I
local delay (combining 10 and cpu procetsing) by drawing a random number S
from a probabilistic distribution.

The performance parameters that we use to compare distributed con-

currency control algorithms include read throughput, 1rite throughput,

average read response time and average write response time. Read

throughput is the number of read-only requests successfully completed

' - per time unit; read-only requests processed and subsequently aborted are
*not included. The write throughput is similarly defined. Read response

time is measured from the time a read-only request is initiated by a TM

to the time when the next read-only request of the same transaction is

initiated by the same TM. Thus, it may include communication delay,

blocking delay, and processing delay. Average read response time aver-

ages over the response times of all successfully completed read-only

requests. Average write response time is similarly computed.

In addition to blocking delay, communication delay, and processing

delay, other factors also affect average response times and throughputs

(e.g., transaction abortion, deadlock detection, and multiple versions

of data). The concurrency control algorithms evaluated in this section

can be differentiated by the way they trade off these factors. Some

algorithms trade longer blocking delay for fewer transaction abortions,

and others trade reversely. Some trade more communication delay for

less blocking delay, and others trade reversely. We describe these

algorithms in the next section. In Section 6.4, based on the total

throughput, we compare and rank these algorithms. Detailed data of the S
performance parameters can be found in the Appendix.

6.3 Description of Algorithms

The algorithms that we will consider are listed below. Selection

. of these algorithms is based on our earlier heuristic evaluation

*, reported in [BELN81a]. The selected algorithms were shown to perform

better than the algorithms discarded. Names of some algorithms are

linked by the conjunctive "and" (e.g. Primary Site and Primary Site).

The term before the conjunctive describes the method used for read

, ..*--------.......-

-85-

requests, and the term after the conjunctive describes e method used

for write requests. These algorithms are described briefly in this sec-

tion and summarized in Figure 6.2. Details of these algorithms can be

found in the references.

1. Primary Site and Primary Site Two Phase Locking (C-C)

2. Primary Copy and Primary Copy Two Phase Locking (P-P)

3. Basic and Basic Two Phase Locking (B-B)

4. Basic and Primary Copy Two Phase Locking (B-P)

5. Basic and Primary Site Two Phase Locking (B-C)

6. DDM Multiple Version and Optimistic Two Phase Locking (DIM)

7. Basic and Optimistic Two Phase Locking (Opm)

8. Majority Consensus Timestamp (Maj)
9. Wait-Die Two Phase Locking (Die)

10. Basic Timestamp (BaT)

11. Multiple Version Timestamp (MvT)

12. Dynamic Timestamp (Dyn)

The SDD-l algorithm is not explicitly covered because the Dynamic .

Timestamp algorithm is an improved version of it ([LIN79, (LIN81]).

Neither is the Conservative Timestamp algorithm covered, because this

algorithm essentially executes transactions serially in timestamp order.

Thus it can perform better than other algorithms only when the transac-

tion size is very large and the system load is extremely heavy and con-

current execution of transactions becomes counterproductive.

The Primary Site and Primary Site method is essentially a central- *1

ized two-phase locking method. All requests for read locks and write
locks are sent to and processed by a designated primary site, which may

use backup sites to improve resiliency. This method trades fewer tran-

saction abortions for more transaction blocking, and it checks for lock

conflict as early as possible. It detects deadlock as early as possi-

ble, and it avoids distributed deadlock detection; but it has a
bottleneck at the primary site.

The Primary Coqv and Primary Cony method is a generalized version

of the Primary Site and Primary Site method. All requests for read

locks and write locks are sent to and processed by a designated primary

copy site. However, primary copy sites for different data items may be

..- ...

9 .°

-86-

different, thus distributed deadlock may occur. This method also trades

fewer transaction abortions for more transaction blocking' and it checks 0

lock conflict as early as possible. It requires distributed deadlock

detection, but it may delay deadlock detection to reduce communication

overhead.

The Basic and Basic method sets read locks and reads data locally

if a local copy is available; otherwise it locks and reads the closest

copy. It sets write locks globally. For each update request, an update

lock is requested from all copies, and the update request is granted

only after locks from all copies are obtained. This method trades fas-

ter read-only transaction response time for slower write transaction -"-

response time. It also trades more transaction blocking for fewer tran-

saction abortions. It checks for lock conflict and deadlock as early as

possible, and at the expense of more communication overhead.

The Basic and Primary Cov method processes read requests as the

previous method does, but it requests write locks only from a designated

primary copy. This method checks for most lock conflict as soon as pos-

sible, but it may delay distributed deadlock detection to reduce commun-

ication overhead. This method also trades fewer transaction abortions

for more transaction blocking.

The Basic and Primary Site method is similar to the last method

except that update lock requests are sent to a central site instead of

to several primary copy sites. Thus deadlock detection is more central-

ized than in the previous method, and overhead is more centralized at

the primary site.

The DDM [CHAN82a, CHA1N82b] method avoids conflict between read

requests and update requests by keeping several versions of each data %

item. For each update request, DDM locks locally (if a local copy

exists, or locks the closest copy). The update lock is propagated to

other copies at transaction end. Detection of most conflicts among

update requests is delayed until transaction end. Thus blocking delay

is minimized for most write transactions at the expense of more transac- -e
tion abortions at transaction end.

.

.-

-87-

The Basic and ODtisic method sets read and update locks locally, •0!
if i local copy exists; otherwise it locks the closest copy. The update ,

lock is propagated to all copies when the transaction that holds the

update lock ends. Thus, distributed lock conflict checking and deadlock

detection is delayed until a transaction ends. This algorithm reduces

transaction blocking delay at the expense of more transaction abortions. O

The Maiorit¥ Consensus algorithm is similar to the Basic Optimistic

algorithm. Each transaction has two phases: a read phase and a commit

phase. During the read phase, a transaction reads locally if a local

copy exists; otherwise it reads the closest copy. Timestamps of data

items read by a transactions are recorded. During the commit phase,

both read-only and update transactions must be certified by comparing

the timestamps of the data read by each transaction to the transaction

timestamp. Because of the certification step, read-only transactions

require more communication overhead in this algorithm than in the Basic

Optimistic algorithm. The details of the algorithm can be found in

[BERN81a,THOM79]. If the algorithm is modified to favor read-only tran-

-.' sactions so that read-only transactions need no certification, then it

.. requires no more communication overhead than the Basic Optimistic algo-

- rithm. This algorithm checks for lock conflicts as late as possible,

and it trades less transaction blocking for more transaction abortions.

,..I In the Wait-Die algorithm, a unique sequence number is attazhed to

every transaction. A transaction always locks locally if a local copy

is available; otherwise it locks the closest copy. The locks are pro-
-40

pagated to other copies when the transaction commits. Whenever a tran-

saction is blocked by another transaction, the algorithm compares the

sequence numbers of the two transactions. If the blocked transaction

has a lower priority sequence number, it waits, otherwise it aborts.

This algorithm checks local lock conflict as soon as possible, but it "

checks distributed conflict at transaction end. It has no transaction

*... deadlock (at the expense of more transaction abortions).

In the Basic Timestamp method, a read and a write timestamp are -5

attached-to each data item of the database. Each transaction that reads

or ipdates the data item updates its read or write timestamp. Conflict

is detected by comparing the timestamp of the transaction that reads or

-...."......- -.- - -..- . , . .. o- - •,...-.."-...... .'. '-/"--. '","' ."_

*7 7

-88-

writes a data item with the timestamps of the data item, and not by com-

paring the timestamps of two transactions as done by the Wait-Die algo- 0.

rithm. This algorithm is similar to the Wait-Die algorithm because it

also avoids transaction deadlock. Unlike the Wait-Die algorithm, it has

no blocking delay and possibly has more transaction abortions. This

algorithm may have fever transaction abortion than the Wait-Die algo- "

rithm when most transactions are read-only, because it allows two tran-

sactions (a read-only and a write) to access the same data item simul-

taneously.

The Multiple Version Timestamp algorithm is a generalization of the

previous algorithm. It keeps several versions of each data item in

order to reduce conflict between read-only transactions and update tran-

sactions. Thus, this method trades more overhead of maintaining multi-

ple data versions for fewer transaction abortions.

The Dynamic Timestamp algorithm [LIN79, LIN8]] is an improved ver-

sion of SDD-l algorithm; it is unique among all the algorithms that we

will compare for the following reasons. It requires transaction times- V

tamps but not data item timestamps. It does not avoid transaction

blocking, thus it trades more transaction blocking for fewer transaction

abortions. But it uses preanalysis of transactions to reduce unneces-

sary transaction blocking. This algorithm may require a lot of communi-

cation overhead when many null write messages are needed [BERN82, LIN79,

LIN81], and its performance may depend on system load [LIN81]. Thus it

may perform poorly in some system environments.

The principal characteristics of these algorithms are summarized in

Figure 6.2.

......................................
. "- - - . -- .- . . -. - .. *

-89-

B-B P-P c-c B-P BaT MvT DEN Opin Paj Dit Dyn

blocking/abortion b b b b a a am b
lock conf lict check 8 a a a5 a a x x 1 x a
deadlock detection a 1 a 1 1 1 1
Scheduler 2 2 2 2 t t 2c2 C c, 2 t
Location of Scheduler d d cn d d d a a d d d
DatalReplication n p p p p p p p V p n

b: transaction blocking is preferred.
a: transaction abortion is preferred.
m: both blockint and abortion are used.
a: conflict or ecadlock is checked as soon as possible.
1: conflict or deadlock is checked as late as possible.
x: local conflict is checked as soon as psible, but6

distributed conflict is checked at transa:ctio end.
" :the item does not apply.

2: two-phase loknscheduler.
t: timestamp scheduter.
c: certifier scheduler.
2,c: mixed 2-phase locking and certifier scheduler.
cn: centralized.
d: distributed.
n: do nothing.
p: primaary copy.
v: voting.

Figure 6.2 Sum.ary of Concurrency Control Algorithms

.-.O*i*. ~

-90-

-- 6.4 Performance Evaluation

6.4.1 Short Transaction Loaded &10 Bound

In this section we compare the performance of distributed con-

currency control algorithms in a system environment in which most tran- "

sactions are relatively short and 10 resource is the performance

bottleneck. The comparison of these algorithms is summarized in Figure

6.3. The comparison is based on actual simulation results except for

the Wait-Die, Majority Consensus Timestamp, and Dynamic Timestamp algo- .

rithms. The evaluation of the Wait-Die algorithm is based on its simi-

larity to the Basic Timestamp algorithm; the evaluation of the Dynamic

Timestamp algorithm is based on the results of [LIN81]; and the evalua-

tion of the Majority Consensus Timestamp algorithm is based on its simi- O

larity with the Basic Optimistic algorithm.

Figure 6.3 shows that five algorithms perform better than others:

the Ba Timestamp, Multiple Version Timestamp, DDM, Optimistic, and

Wait-Die algorithms.

In the short transaction loaded and 10 bound environment, we found

that transaction abortion is a better strategy than transaction blocking

(i.e. it is better to abort than to wait). The abortion strategy is

used by the Basic Timestamp and Multiple Version Timestamp algorithms,

and to a large degree by the Wait-Die algorithm. We also found that it

is better to delay lock conflict detection than to detect lock conflict '.,

early. Both the DDM and the Basic Optimistic algorithms use the delay .

strategy.

Although the DDM algorithm uses locking for write transactions, and

the Optimistic algorithm uses locking for both read and write transac-

tions, blocking occurs only among local transactions that access data

* from the same site. Transactions running at different sites never block

each other. Write locks are propagated to other sites at transaction

end, then conflicts among transactions running at different sites are

detected-and always result in transaction abortions. Therefore perfor-

mance of these two algorithms is closer to those of timestamp algorithms

than to those of two-phase locking algorithms. However, notice that the

.. .".

' . . , - . - . - . . . , o , , - . o v . -

-91-

DDH and Basic Optimistic algorithms always abort transactions at tran-

saction end, while the timestamp algorithms may abort transactions at an

earlier phase of their execution.

These five algorithms perform equally well in most cases. The

timestamp algorithms perform better than the DDM and Basic Optimistic

algorithms when the database is fully redundant (thus read-only transac-

tions complete quickly), the R/W ratio is high (probability of conflict

among data requests is small), and local delay is large (local blocking

delay is large and abortion at transaction end is expensive). However

when the database is less redundant, the DDM and Basic Optimistic algo-

rithms perform slightly better than the timestamp algorithms. Both

read-only and write transactions require some remote data accesses and

take longer to complete, and this causes the probability of conflict

among transactions to rise and the timestamp algorithms to abort more

transactions.

The Basic Timestamp algorithm performs as well as the Multiple Ver-

sion Timestamp algorithm, and the latter requires more overhead and "

storage space for keeping multiple versions of data [LINN83I. Therefore

the Basic Timestamp algorithm is preferable to the Multiple Version

Timestamp algorithm, unless the multiple versions of data are required

in any case for database recovery and resiliency. Similarly, the

difference in performance between the DDM and Basic Optimistic algo-

rithms is very small, and the former needs higher overhead and more

storage space for keeping multiple versions of data. The Basic Optimis-

tic algorithm is preferable, unless the versions cf data are required in

any case for database recovery and resiliency.

The Wait-Die algorithm performs slightly worse than the Basic

Timestamp algorithm when most transactions are read-only. When a read-

only transaction conflicts with a write transaction, the timestamp algo-

.rithms never abort the read-only transaction, and they abort the write

trinsaction only when a nonserializable execution may occur. However

when most transactions are write transactions, the Wait-Die algorithm is

* " preferred because it performs as well as the Basic Timestamp method and

* jit needs no data item timestamps, which require storage space and pro-

cessing overhead.

"RD-A138 892 DISTRIBUTED DATABASE CONTROL AND ALLOCATION VOLUME 2 2/2
IPERFORMANCE ANALYSIS..CU) COMPUTER CORP OF AMERICA
I CAMBRIDGE MR W K LIN ET RL. OCT 83

UNCLASSIFIED RADC-TR-03-226 VOL 2 F38692-8i-C-8028 F/0 9/2 N

III. l~llsoon~llll

Lll

L5.0.

11.

I -o

1.2 11111. 1 =

4.. 4'4

10

* • *.*. --

• ,:-92-

The Dynamic Timestamp algorithm performs best when most transac-

tions are read-only, communication is fast, database is almost fully

redundant, and preanalysis can be done on most transactions. In this

- environment, the fast protocols, R1, Rla, Rlab, and Rib [LIN79], LIN821

* apply to most transactions. Assuming system conditions remain the same

except that the database is not redundant, the Dynamic Timestamp algo-

ritm still performs relatively well, because more efficient protocols

(R2, R2a, R2ab, and R2b) apply to most transactions. These protocols

are not as efficient as the group of R1 protocols, but they are rela-

tively fast compared with R3 protocol. In all other cases, either when

the communication is slow or when most transactions update the database,

the Dynamic Timestamp algorithm is not efficient.

The Majority Consensus algorithm performs reasonably well, but not

as well as the Basic Optimistic algorithm. The Majority Consensus algo-

rithm as proposed in [THOM79] requires extra communication overhead for

read-only transactions. If the algorithm is modified to favor read-only

transactions, so that read-only transactions need not be certified, then

it would perform as well as the Basic Optimistic algorithm.

To summarize, in this environment transaction abortion is a better

strategy than transaction blocking, and delayed lock conflict checking

is a better strategy than early lock conflict checking.

6.4.2 Short Transactions & Communication Bound

In this section we compare the performance of distributed con-

currency control algorithms in a system environment in which most tran-

5. sactions are relatively short and communication channel is the perf or-

N mance bottleneck. The comparison of the algorithms is summarized in

Figure 6.4. The comparison is based on actual simulation results except

for the Wait-Die, Majority Consensus, and the Dynamic Timestamp algo- .

ritms. The evaluation of the Wait-Die algorithm is based on its simi-

larity to the Basic Timestamp algorithm; the evaluation of the Dynamic

Timestamp algorithm is based on the results of [LIN81] ; and the evalua-

tion of the Majority Consensus algorithm is based on its similarity to

the Basic Optimistic algorithm.

- *** ~~ ~ a-a.. .;.......-............................

, , . . ' ' -' . % " , ' . ' -
-

- % ..- - . ' . . ' ,, . , . " -, . . . , . . . a . - . . ' - _ . ' - . ,

-93-

-~ ~~ - --- •---

B-B P-P C-C B-P BaT MvT DDM Opm Maj Die Dyn

R1W L/C Red
low * full 6 4 531111213
low low full 6 4 5 3 1 1 1 1 2 1 3
high low full 6 4 5 3 1 1 1 1 3 1 3
high high full 4 4 5 3 1 1 2 2 3 2 1
high high part 6 6 7 5 3 3 1 2 3 4 2
high low part 5 5 6 4 2 2 1 1 2 3 2
lov part 6 4 5 4 2 2 1 1 2 2 3

Rank 1 iS best and Rank 6 is worst.
Rank numbers have no absolute meaning. They only show relative

performance across a row, not across a column.
R/W: Ratio of Read-only transactions to Write transactions
L/C: Ratio of Local delay to Communication delay, excluding

R queuing delay
Red: Redundancy of the database

* : Does not matter

Figure 6.3 Performance Comparison: Short
Transaction Loaded & 10 Bound

Figure 6.4 shows that seven algorithms perform better than the oth- "."%

ers: Basic-Primary Copy, Basic Timestamp, Multiple Version Timestamp,

DDM, Basic Optimistic, Wait-Die, and Dynamic Timestamp.

We found that transaction abortion, similar to the SIO environment,

is a better strategy than transaction blocking, and that delayed lock

conflict detection is a better strategy than early detection. However,

because of the communication channel bottleneck, performance of the

algorithms that require extra communication messages degrade in some

cases.

The Basic Timestamp and Multiple Version Timestamp algorithms per-

. form best in all cases. However, when the database is fully redundant,

the DDM and Basic Optimistic algorithms perform just as well. Read-only

transactions never incur communication delays, and write transactions

incur communication delays only during the commit phase. Therefore - -

transactions finish fast, blocking delay is shorter, and abortion at

transaction end is less expensive.
. . - s

The Majority Consensus algorithm, as proposed in [THOM79], does not

"" perform -veil because of the extra communication messages required for

read-only transactions. If the algorithm is modified to favor read-only

transactions, so that read-only transactions need not be certified, the

A. _%A .%..

90• J1.-

-94-

algorithm would perform as veil as the Basic Optimistic-algorithm.

The Wait-Die algorithm performs just as veil as the timestamp algo-

rithms in most cases. However, when most transactions are read-only,

the Wait-Die algorithm unnecessarily aborts more read-only transactions

than the timestamp algorithms, thus performing worse than the timestamp .0

algorithms.

The DDM algorithm performs as well as the timestamp algorithms when

the database is fully redundant. However, when the database is less

redundant and most transactions are read-only, its performance degrades

as shown in Figure 6.4. When the database is not fully redundant,,

read-only transactions require one extra communication message, which

causes a long delay in a communication bound environment.

The Basic-Primary Copy algorithm performs 102 to 20Z worse than the

best algorithms in all cases, because it incurs extra communication ses-

sages when obtaining locks from the primary copies, and it uses transac-

tion blocking instead of transaction abortion. The Dynamic Timestmp

algorithm performs best when most transaction are read-only and can be

preanalyzed. In this environment, the most efficient protocols can be

used and communication overhead for null-write messages is minimized.

Since the Basic Timestamp algorithm performs as well as the Multi-

ple Version Timestamp algorithm, the former is preferable unless the

multiple versions of data are required in any case for database recovery

and resiliency. Similar observations apply to the DDM and Basic

Optimistic algorithms [LINN831.

Our conclusion is that in this environment abortion is better than

blocking, and that delayed lock conflict checking is better than early

lock conflict checking. However, some algorithms that use these two

strategies may not perform well in some cases because they require extra

communication messages. -'

dp'

: ".- ..." .. .-...:- ,. -.....- ,. , % * *.* - .. ,.>: ... - *..

-95-

B-B P-P C-C 5-P BaT NMwT D Op. Naj Die Dyn
R/W L/C Red 2

low * full 5 4 4 3 1 1 13 1 3
high 19V full 6 1 1 3
hig high full 4 4 1 2 2
hig low part 5 6731142522
low lo part 5 4 6 2 1 1 2 1 3 1 4
high high part 45 62 1 131 52 2
lOy high part 4631121314

Rank 1 is beat and Rank 6 is worst.
Rank numbers have no absolute meaning. They only show relative

performance across a roy, not a column.
R/W: Ratio of Read-only transactions to Write transactions
L/C: Ratio of Local delay to Communication delay, excluding

queuing delay
Red: Redundancy of the database

Does not matter

Figure 6.4 Performance Comparison: Short Transaction Loaded
& Communication Bound

6.4.3 Long Transaction Loaded & 10 Bound

In this section we compare the performance of distributed con-

currency control algorithms in a system environment in which most tran-

sactions are relatively long and 10 resource is the bottleneck. The

comparison is sumarized in Figure 6.5. The comparison is based on

actual simulation results except for the Wait-Die and Majority Consensus

algorithms. The evaluation of the Wait-Die algorithm is based on its

similarity to the Basic Timestamp algorithm; and the evaluation of the ".-6

Majority Consensus algorithm is based on its similarity to the Basic

Optimistic algorithm.

Figure 6.5 shows that three algorithms perform better than the oth-

era: Basic Primary, DDK, and Basic-Optimistic. load)

In this environment (long transactions, heavy system load) transac-

tions conflict with each other more often, but only a fraction of the

conflicts lead to transaction deadlocks. Thus, transaction blocking is

better than indiscriminate transaction abortion. Moreover, prompt lock

conflict-detection is better ,han procrastination. Lock conflicts that

are detected at transaction end always lead to deadlocks. The Basic

' Primary, DDK, and Basic Optimistic algorithms use the blocking strategy.
, 4.* , . I

• . . -

• , -- . ' : , .- .. '.. - -. -. ' .- . - .-. ,-. . :,

-96-

- The Basic Primary algorithm uses the early lock conflict detection stra-

tegy. .

The Basic Primary Copy algorithm performs best in this environment

because it does not abort a transaction unless it deadlocks, and it

detects lock conflicts as soon as they occur. However, when most tran-

sactions are read-only, and the database is not fully redundant, the

Basic Primary Copy does not perform as well as the DDM and Basic-

Optimistic algorithms, because the extra communication messages required

by the Basic Primary Copy algorithm for write-locks and deadlock detec-

tions does not outweigh the extra transaction abortions by the DDH and

Basic-Optimistic algorithm.

The DDH and the Basic Optimistic algorithms perform well in par-

tially redundant databases, because more lock conflicts are detected

during the reading phase of transactions and less transactions abort at

the commit phase. However, when the database is fully redundant, most

-. lock conflicts are detected during the commit phase, which always leads

to deadlocks and transaction abortions, thus resulting in the poorer

-' ~** performance of these two algorithms in this conditions.
yi" .

.' The timestamp algorithms do not perform as well as the Basic-

Primary method because transaction blocking is better than transaction

abortion. However, the timestamp algorithms perform better than the DDM

and Basic-Optimistic algorithms, when the database is fully redundant.

Read-only transactions incur no communication delay and complete

quickly; the read-phase of write transactions also completes quickly.

Thus conflict between read-only transactions and write transactions that

"'S'. result in the abortion of write transactions is reduced. In addition,

when the database is fully redundant, the timestamp algorithms detect

more conflicts at the read-phase, thus aborting more transactions at

earlier stages of processing, while the DDM and Basic-Optimistic algo-

rithms detect more conflicts at the commit phase, thus aborting more

transactions at their ends. However, when the database is not fully

redundant, the DDM and Basic-Optimistic algorithms detect more conflicts

at the rrad-phase, and they abort more transactions at the early stages

of processing, thus performing better than the timestamp algorithms.

in.. .'.. •,.~ * .b ,i . ,. o'..'..'., . "." ' ,., , ,. . ' . . . "- ° . . . " • • . , -.

,, ,.,,,,,' ,' ,,. ' ., - ., .,.- .. .,. - .. .,. . . - . .. , .. . -- -'- . / . . ,- . . -. , , , .,<

-97-

The Wait-Die algorithm performs as veil as the Basic Timestamp

algorithm, except vhen most transactions are read-only. Then the Basic

Timestamp algorithm has higher throughput of read-only transactions than

the ait-Die algorithm.

The Majority Consensus algorithm also performs poorly because it .0

delays lock conflict detection until transaction end, thus resulting in. many late transaction abortions. In fact, all certifier algorithms that

certify transactions at transaction end perform badly in the long tran-

saction environment. The Primary Site & Primary Site (C-C) and the Pri-

mary Copy & Primary Copy (P-P) algorithms also perform relatively well

when the database is fully redundant. These two algorithms abort fever

transactions than the Basic Tinestamp, Multiple Version Timestamp, DDM,
-- and Basic Optimistic algorithms, and the savings in transaction abor-

tions more than make up for the extra communication messages required by

the two algorithms. The Basic-Basic algorithm does not perform as well

because it requires many more communication messages than other algo-

riths.

To summarize, in this environment transaction blocking is better

than transaction abortion, and early lock conflict detection is better

than late detection.

!.'.-

a. .

/%.:::

...

.. . ,* . .*.* .. . *.* .

-98-

B-B P-P C-C B-P BaT MvT DDU Opm Maj Die

R(R*W) Loc/Com Redundant
low low full 5 2 2 1 2 2 3 3 4 2
high low full 5 2 2 1 2 2 3 3 4 3
low high full 5 2 2 1 2 2 3 3 4 2
high high full 5 2 2 1 2 2 3 2 4 3
low low part 5 2 2 1 3 3 1 1 4 2
high low part 5 3 3 2 3 3 1 1 4 3

high part 5 2 2 1 3 3 1 1 4 2
high high part 5 3 3 2 3 3 1 1 4 3

Rank 1 is best and Rank 6 is worst.
: Rank numbers have no absolute meaning. They only show relative

R/W: performance across a row, not
a column?

LI: Ratio of Read-only transactions to Write transactions
L/C: Ratio of Local delay to Communication delay, excluding

queuing delay
Red: Redundancy of the database

* : Does not matter

Figure 6.5 Performance Comparison: Long
Transaction Loaded & IO Bound

6.4.4 Long Transactions & Communication Bound

In this section, we compare the performance of distributed con-

currency control algorithms in a system environment in which most tran-

sactions are long and communication channel is the bottleneck. The com-

parison of these algorithms is summarized in Figure 6.6. The comparison

is based on actual simulation results except for the Wait-Die and Major-

ity Consensus algorithms. The evaluation of the Wait-Die algorithm is

based on its similarity to the Basic Timestamp algorithm; and the

evaluation of the Majority Consensus algorithm is based on its similar-

ity to the Basic Optimistic algorithm.

Figure 6.6 shows that six algorithms perform better than the oth-

ers: Basic Timestamp, Multiple Version Timestamp, DDM, Basic Optimistic,

Basic Primary, and Wait-Die.

In this system environment (long transactions, heavy system load,

and long communication delay) transactions conflict with each other more

often, brt only a fraction of the conflicts lead to deadlocks; thus,

transaction blocking is better than indiscriminate transaction abortion.

Moreover, early lock conflict detection is better than procrastination.

I .-*..,*• .-.-[- -

. .,..., .. ,, ,: ..,...,:..... ... a'. - .-- .a' .. 4**: - a- "... -- -. ... : .-. '-.
., '.' : ,-,a • • ,,"- ,."-a " • -' . '., J2.

~.. - -~~.°- - -

-99-

Lock conflicts detected at transaction end always lead to deadlocks.

The Basic Primary, DDE, Basic Optimistic, and to certain degree the '9
.ait-Die algorithms use the blocking strategy; and the Basic Primary and

-ait-Die algorithms detect lock conflicts as early as possible. In
.."addition, because of long communication delay, algorithms requiring

extra comunication messages may not perform yell even if they use tran-

"@action blocking instead of transaction abortion. The DDM and the Basic

Primary algorithms require extra communication massages in some cases.

The Basic Primary Copy algorithm performs the best when the data-

base is not fully redundant because it requires no more communication

messages than the other algorithms, and because it causes fever unneces-

sary transaction abortions. Even when the database is not fully redun-

dant, if most transactions are write transactions and local delay is

high relative to the communication delay, the Basic Primary Copy algo-

rithm still performs better than the Basic Timestamp, Multiple Version

Timestamp, DDM, and Basic-Optimistic algorithms, because the latter

abort write transactions frequently. However, when the database is

fully redundant, the Basic Primary Copy algorithm requires more communi-

" cation massages than the Basic Timestamp, Multiple Version Timestamp,

DDE, and Basic Optimistic algorithms. Thus, except for the cases above,

the extra communication messages required by the Basic Primary Copy

algorithm make its performance worse than that of the Basic Timestamp,

Multiple Version Timestamp, DDM, and Basic-Optimistic algorithm in this

communication bound environment. .

The timestamp based algorithms perform best when the database is

fully redundant, then read-only transactions incur no communication

delay and complete quickly. The read phase of write transactions also

completes quickly. When read-only transactions and the read phase of

write transactions complete quickly, conflicts between read-only and

write transactions that result in abortion of the write transactions is
reduced. Thus, unnecessary transaction abortion is reduced.

The DDE method avoids conflicts between read-only transactions and

write tfansactions, but it pays with more abortions of write transac-

tions at transaction end. Thus, when most transactions are read-only,

it performs very well. The higher throughput of read-only transactions

.,.:-

-. -b-,--.o*

-100-

make up for the extra abortion of write transactions. Notice that DDM

requires a extra round of communication messages for read-only transac- .'

tions when the database is not fully redundant. Then its performance .-.'-

degrades.

The Basic-Optimistic algorithm also performs well when most tran-

sactions are read-only; then read-only transactions and the read phase

of write transactions complete quickly. Otherwise it performs poorly

because the system is eventually saturated with many long write transac-

tions that later abort.

The Wait-Die algorithm performs as well as the Basic Timestamp

algorithm when most transactions are write transactions, but not as well

when most transactions are read-only transactions. Since the Wait-Die

algorithm needs no overhead for maintaining data item timestamps, it is

preferable to the timestamp based algorithms if most transactions are

write transactions.*

The Basic & Basic, Primary Copy & Primary Copy, and Primary Site &

Primary Site algorithms perform poorly because they require more commun-

ication messages than other algorithms. Communication overhead is

expensive in this communication bound environment.

To summarize, in this environment transaction blocking is better -

than transaction abortion, and early lock conflict detection is better

than late detection. However, some algorithms that use these two stra-

tegies may not perform well in some cases because they require extra

communication messages.

6.5 Conclusion

We found that five of the twelve algorithms perform best in various

system environments: Basic Timestamp, Multiple Version Timestamp, DDM,

Basic Optimistic, and Basic-Primary algorithms.

When most transactions are short, concurrency control algorithms

that abort conflicting transactions (such as Basic Timestmp, Multiple

Version Tiaestamp algorithms) perform better than algorithms that block

conflicting transactions (such as the Basic Primary algorithm). In this

.".. . .

.-_-. -,. . _, _.- - K. -. ° .

-- r .. 7r. .

-101- .-"'

-. RVoCovdnB-B P-P C-C B-P BaT MvT DIII Opm Maj Die
- v ~R/(R+W) Loc/Com Redundant .

low low full 6 5 5 6 1 1 5 4 6 1
high full 6 5 4 1 1 3 3 6 2
low high full 6 5 1 2 2 4 3 6 2
high high full 6 5 4 2 2 1 3 6 3
low low part 6 5513 3 236 3
high low part 6 5 5 1 2 2 2 1 6 3
loy high part 6 5 5 1 2 2 4 3 6 2
high high part 6 5 2 3 3 1 2 6 3

Rank I is beat and Rank 6 is worst.
Rank numbers have no absolute meaning. They only show relative

performance across a row, not a column.
R/W: Ratio of Read-only transactions to Write transactions
L/C: Ratio of Local delay to Communication delay, excluding

queuing delay
Red: Redundancy of the database

Does not matter

Figure 6.6 Performance Comparison: Long
Transactions & Communication Bound

environment, transactions conflict rarely; and when they do conflict,

the blocking transactions tend to be longer than the average transaction

size and blocking delay long [LINN83]. If a two-phase locking algorithm

-m ust be used, algorithms that delay lock conflict checking (such as the

DDM and the Basic Optimistic algorithms) perform better than those that

expedite lock conflict checking (such as the Basic Primary algorithm).

Unless the communication bandwidth is very high, communication delay can

devastate system performance; thus, the designer should reduce communi-

cation delay by locally controlling and accessing data as much as possi-

ble.

* The issue of balancing communication delay against data distribu-

tion and replication is part of the complex problem of distributed data-.'4

base design. Distributed database design must also take into account

Lhe issues of distributed query processing and distributed database

reliability, and is beyond the scope of this handbook.

Behavior of systems that have long transactions is very different

from that of systems that have short transactions. Long transactions

degrade system performance very quickly because they have more transac-

tion conflicts. Since only a fraction of these conflicts results in

deadlocks, concurrency control algorithms that use transaction blocking

.• _> A . . . o - . . . **.- .*, *"MP ." .
o
o- "..' °% . .. -. '

., ."d .' - ' '' -- ." ".' " " . -'. ",," >".-. *-" -" -. . " " --.. *" -* .". "." '] , ,-. -..- ' ',:

-102-

often perform better than those that use transaction abortion indiscrim-

inately. Moreover, concurrency algorithms that detect transaction con-

flict earlier often perform better than those that detect transaction

conflict later. The effect of communication delay on the performance of

a system that has long transactions is even more devastating than the

effect on a system that has short transactions. Thus the designer must '4

reduce communication delay as much as possible by controlling and

accessing data locally.

However, no matter which concurrency algorithm the desil ar uses, a

system that has long transactions always performs worse t - system

that has short transactions. The designer should design tran .ions to

access as much data in parallel as possible, and to break long transac-

tions into shorter transactions. Long transactions that cannot be bro- -

ken into shorter ones must be executed in background mode.

Our performance study shows that no one algorithm performs best in

all system and application environments. If the system environment is

stable, the database designer can select one algorithm that performs

best in the environment. If the system environment is not stable, the

database designer can assign different weights to different environments

according to how often the system stays in each environment. The data-

base designer then selects the algorithm that has the best weighted

average perf ormanc e.

From the results, we can also conclude that the best algorithm

would be one that could be adjusted by the system administrator accord-

ing to the environment. The administrator would adjust the algorithm to

use transaction abortion and delay lock conflict detection whenever

transactions are short, and to use transaction blocking and detect lock

conflicts as soon as possible whenever transactions are long. The adju-

stable algorithm would also alternate, depending on the load on the com-

-5 munication channel, between algorithms that have more localized control

and algorithms that have more distributed control.

• .-.. '..-..j..-.. -.

7LZ2-07

-103-

6.6 References 6

Lin[l] Lin, W.K., "Cogcurrency Control in a Multiple* Copy Distributed
Database System, 4th Berkeley Workshop on Distributed Data Manage-
saent and Computer Networks, Auig. 1979., Berkeley, CA.

Lin[2J Lin, V.K., "Performance Evaluation of Two Concurrency Control
Mechanisms in a Distributed Databas se, ACM SIGMOD-81 Inter-
national Conference on Managemento DALa April 1981, Ann Arbor,

LN[1J Lin, W.K. J. Nolte, "Performance of Two Phase Locking," 6th
Berkeley *orkshop on Distributed Data Management and Computer Met-
works, Feb. 1982, Pacific Grove, CA.

LN[21 Lini H.K. J. Nolte, "Read-Only Transaction and Tvo Phase Lock-
ing,' 2nd IEEE Sympos in Ont Reliability in Distributed Software and

* Database Systems, Jul. 1982, Pittsburgh, PA.

LN[31 Lin V.K., J. Nolte, "Communication Delay and Two Phase Locking,
3rd international Conference on Distributed Computing Systems, Ot.
1982, Fort Lauderdale, FL.

[Tho] Thomas R.H. "A Majority Consensus Approach to Concurrency Control
for Multiple Con Dattabases," ACM Trans. on Database Systems, Vol.
4, No. 2, Jne 1979, pp. 180--209.

-104-

SECTION VII

Conclusion

Wente K. Lin

'-41d

IrI

L . . * * . . .S .t . ,-

-105-

7. Conclusion

The DDB Control and-Allocation Project has set out to achieve the

following objectives:

1. Review the distributed concurrency control research published in the

literature and incorporate that research into the taxonomy of the

distributed database concurrency control algorithms. Based on this

taxonomy, we would develop a new framework for distributed database

concurrency control.

2. Develop new distributed database concurrency control algorithms

using the framework developed in 1.

3. Simulate the performance of the distributed database concurrency

control algorithms that are found to be dominant in the previous

study.

4. Build an analytical model of distributed database concurrency con-

trol.

5. Survey the current studies of reliability and recovery of distri-

• "buted database systems and the analysis of published algorithms.

6. Develop a framework for reliability and recovery of distributed

database systems.

7. Consolidate the results of the previous tasks into a system

designer's handbook.

We have achieved these objectives, and the results are described in this

final technical report.

The first objective is achieved by means of the framework discussed

in Section II of Volume I. The framework facilitates the taxonomy of

distributed concurrency control algorithms by identifying the essential

component- functions of distributed concurrency control mechanisms. This

framework is an excellent basis for further research in the standardiza- :9j

tion of distributed concurrency control architecture.

S. I t -A -

% , ..' -..-. .. .". ?. -.....

-106-

The second objective of developing new algorithms using this frame-

work is achieved by the new distributed concurrency control algorithms 0
described in Section III of Volume I. In this section, new algorithms

that store and use older versions of data items are described.

The third objective of simulating and evaluating the performance of

distributed database concurrency control algorithms is achieved by a

series of reports in the second volume. Sections II through V report

the relationship between the performance of various algorithms and the

system parameters. Section VI summarizes the simulation results and

compares the performance of twelve algorithms. The results of the

second volume serve as an excellent basis for designing a distributed

database designer's aid. The Designer Aid would help the system

designer to design distributed transactions, partition the database into

fragments, replicate and distribute the fragments, and choose the con-

* currency control algorithm that performs best in his system environment.

The forth objective of analytical modeling of the distributed con-

currency control algorithms is achieved through the analytical models

described in Sections IV and V of Volume I.

The survey/study of reliability and recovery of distributed data-

base systems that achieves the fifth objective is reported in Sections

VI through IX of Volume I and in the third semiannual technical report.

Because the subject is relatively unexplored, only a few algorithms were

reported. To discover new algorithms further research is needed.

A framework for the reliability and recovery of a distributed data-

base system achieving the sixth objective is described in Section VII of

Volume I. This framework captures the essential components of existing

reliability and recovery algorithms. But, because research on this sub-

ject is in its primitive stage, more research is needed to refine the

framework and to use it to develop more efficient algorithms. Moreover,

the refined framework should become a basis for standardizing of distri-

buted reliability and recovery architecture.

Finally, these results have been summrized in a separate distri-

buted database system designer's handbook. This handbook can help the

designer to select a distributed concurrency control algorithm that per-

-107-

forms beat in his system environment. Of course, an automated tool

would be more helpful to the designer. The automated tool would receive

information from the designer about his system (eOg., system and appli-

cation parameters) and it would output to the designer information about

how to best design his system.

Overall we have accomplished vhat we set out to do; and in the pro-

cess we came to understand more fully the mechanism of concurrency con-

trol, reliability, and recovery of distributed database systems. The

next step is to translate these results and this understanding into a

practical, integrated set of tools that aid distributed database

designers, and into a standard architecture of distributed DBMS that

facilitates the interconnection of different DIUSs.
N..°

B'-fIl.

.°.°

2 .. . ",

.
£~~~ o .* -.

' j .,, %. -"--! . . . ,-. * . . '.. . * ,J.
" !

.*,,

S"-108- *-•

."

.9.....

-. '9-.,

9,..

... ', .

.- . ., ,. . , ,' ., ,. . ..' - . ' .".9 - . ., . ., .. ,, . - . ., , . ' . , . .. , , - , ,.*. , - ' .'- - ' - .,. , .' - , " , - -
.°.-" ." " "" " %" "." ." . " -'.-'- ' ."- "o "-- %'% -- ", ", ,,. ,,-" .' . ." ." I','_"" ". ". ". "," -. -. -. . ' . " -." -" •' ,," " " ." ." •"-," •• -" -" '9 ,

-109-

A.

Notations used in the appendix are explained here and in the figures.

4'.

DEAD THROUGHPUT: average number of read-o I equests successfully
processed per unit timeaexcding requests processed
and subsequently aborted.

WRITE THROUGHPUT: Average number of write requests successfully
processed per unit time (excluding requests processed
and subsequently aborted).

Average Response Per Read Request: average time required to process
a read-only request.

Average Response Per Write Request: average time required to process
a write request.

Basic Basic : Basic and Basic algorithm.
Prmry Prmry : Primary Copy and Primary Copy alorithm.
Cntr : Primary Site and Primary Site algorithm.
Basic Prr 5 asic and Primary Copy algorithm.
Basic Cntrl Basic and Primary Site algorithm.
Basic Tstmp Basic Timestmp algorithm.
Mltpl Versn DDM Multiple Version and Optimistic algorithm.
Basic Optms Basic and Optimistic algorithm.

-"'-. ...

% ,-.

• , ..

*w -a- '

':::

a.
I

=

-..?.',

"a;:. :
- 4 " " . " " • ' J " . " . " " " " " . " " " . " . " , " . " , " . " . "

-S. '-'.',..,.,. .,.:.'. . - - . .. ,. / ... ,,. ,' . . . -,' . .. : '. , .'

-a- , . ' - , . . - , ' 'e , - . '- . - ,. - - , , '- , - . - . M - .- . - , - , . - . - . - . . • . . . -

._ .: :. :. , ; . < , . ..,=.. , , , v , ., , : . .. ,. , ...,.., . :...,,.

~TZ-4, DZ-8192

NPIR RlI~o/ Io..f oyI B::ic rrylCntrllBasiclBasiclhasic ltIt .icl
+'-"IW) IComSl 1802 IS3 I Baiclprury| IPrmryI~ntrllTstmpIversn Optus!

*.5.. 08 12 . . . 1..1 3.
* 50Z .2 1 1 1 2.2 2.6 3.1
*752 .2 1 1 1 6 6 4.5 8.3 15. 30 29 30
* 75% 1 1 1 1 I6.3 4.4 5.9
* 75% .5 1 1 1 [6.9 4.6 7.0 15.
* 50% .5 1 1 1 5.
* 25% .5 1 1 1 I1.7

,' * 75%; 2 1 1 1 8. 9.8 9.8 9.2
; "* 50% 2 1 1 1 I3.9

-"* 25%; 2 1 1 1 |1.5 2.3 2.4 2.5
""* 75%; .2 2/3 2/3 2/3]5.0 4.6 3.4 7.8 10.3 6.1 8.7

S75%; .2 2Z3 2/3 2Z3 I5.1

S75% .2 273 273 2/3 I5.9
* 75% .2 /12 112 /12 I4.9 4.7 3.1

'"* 50%; .2 Z/3 2Z.3 2/13 I2.4 2.8
,,,""* 50Z .2 1/.2 1/Z2 1/2I 2.7 2.8

* 25%; .2 D]. 2Z3 2]3 I0.9 1.3 .92 1.8 2.0 1.9 2.1
>''"* 25%[.2 1/2 2 1/. 1/ 2I 1.1 1.3 .8
.','.* 75%; .5 2/ 3 2Z3 23 I 3. 7.8

* 75%; .5 1/2 1/2 112 [3.0 6.4
* 75%; 1 2/3 2/ 3 2/13 |3.2
* 75%; 1 1/2 1/2 1/2 I3.0
* 50% .5 2/3 2/ 3 2/3 I3.8
* 50% .5 1/2 1/2 1/2 |3.6
* 25%; .5 2/3 2/3 2/ 3 /1.5
* 25%; .5 1/12 /2 W 1.5
* 75%; 2 21.3 21.3 2/3 |6.2 6.9 5.4, 6.6
* 75%; 2 112 1/2 1/2 J5.5
* 50% 2 2/3 2/3 2/3 I3.5
* 50% 2 1/2 1/2 1/2 |3.1
* 25%; 2 21.3 2/3 2/3 |1.4 1.7 1.6 1.7
* 25%; 2 1/ 2 1/2 1/.2 I1.4
* 25%; .2 1 12 172 I1.3

.,,* 50 .2 1 1/2 1/2 I3.5 5.0
* 75%; .2 11/2 1/2 9.0 16.
* 25%; .5 1 /2 1/2 /1.2

,.-:* 502 .5 1 1/ 2 I 3.3
'.* 75%; .5 1 1Z 2 I 7.3
,",* 25%; 1 Z /2 1/2 /1.2
,, ,* 50% 1 1 1/2 1/2| 3.1 4.7

-- '.* 75 % 1 1 1Z2 1/2 I6.0 8.9
* 25% 2 1 1/72 1/12 1.1
* 502 2 1 1/2 1/2 J2.6Jr
* 75%; 2 1 1/ 2 1/12 I4.5

,,, 50Z .2 1 1/2 1/2 |4.8 5.4
-- 75%; .2 1 1/2 1/2 I14. 17.
'-, 50% 1 1 1/.2 1/2 [4.5 5.2
,...@ 75%; 1 1 1/2 1/ 2 I9.7 12.

50% .2 1 1/2 2 I 5.5 5.7
• " 75%; .2 1 11.2 1/Z2 I16. 17.

5'. 0% 1 1 1/2 1/2 5 .4 5.7
•752; 1 1 112 1/2 I13. 14.
Mutpepormiglvl at tehresite are 01/1

.. Multiple programing levels at the three site are 1,0/.0/
z-.•Multiple progr ming levels at the three si;e are 2414/4.
: TZ Average no. of request! per transaction ktr nsction sizeO .DZ .Total number 9f data ites in the database I{database size).

) .M: M 1firogramilig level... ,
RR+M . ercent;&e of transactions that are raed-only.

IO0 Com : atio o ocal delay to cnnIcation delay
"-°;" - {~ezcludin$ queueing del&y.,. . .

g o. of Copy . Fraction of the database residing at sites SI, S2, 4 S3.

_ . Figure A.1 REAkD THROUGHPUT: Short Transaction

Loaded~~~.. 4 .nniai on

%j-.."-'

_ __._-_ _ _ _ __"- -_ _"_' -_ _ " I . : : , . - . , ., . -. _ , - - "~r -. . , - . .. r .- . _

TZ-4v DZ-8192
MjIU JIo/ Ino. of y-1 BasiclrrylCutri 1 lauic asic /Iasic N1tpl1Basicj

I 181 182 '8 asa c Prury Total PruryJCutrilTstupJVeron lOpturl

.2 11 2.21 9.5 9.6 .."' S 2 1 1 1 I2.2 1. 2. 5 9.5 9.6 9.3

501 .5 1 1 1 I 4
251.5 1 1 1 4:.

• 7522 1 1 1 7 3.2 3.1 3.1
* 50 2 1 1 1 4.0
* 251 2 a a a 4.5 7.4 7.2 7.3
• 751 .2 213 213 213 1.7 1.6 1.3 2.7 3.4 2.0 3.1

75 2.2 1/2 1/2 1/2 1.7 1.6 1.0
* ,2 2/3 2/3 2/3 2.4 2.7

1 .2 1/2 1/2 1/2 2.6 2.82;z .2 2/3 3 2/3 2 7 2.7 4.8 6,2 5.4 6.0
.2 1/2 1/2 1/2 3.2 2.• 751 .5 213 2/ 3 14 2.6

• 751 .5 1/2 1/2 1/2 .98 2.2
* 751 1 2/32/32/3 12

• 751 1 1/2 1/2 1/2 I.43
• S :. 2/3 2%3 2/3 075Z 2/7 2 3 2

751 2 2/3 2/3 2/3
• 75Z 2 1 1/1/2 1/2 23.0
• 501 2 2/3 2/3 2/3 ".3• s01 2 1/2 12 1/2
• 251 2 2/3 2/3 2/3 4.3 5.2 4.8 5.2

• 2.51 2 12112112• 2H .3 1 1/2 1/2 4. 2
* 501 .2 1 1/21/2 3.5 5.0

• 751 .2 1 1/2 1/2 2.9 5.2
• 251 .2 1 1/2 1/2 102
• 501 .5 1 1/2 1/2 .2751 .5 1 122 55. 1 1 1/2 1/2 .30

25 7.5 1 1/2 1/2 2.5
j5Z 1 /2 1/2

0 2 1/2 1/2 1.

75 1 1 1/21/Z2 3.2.
2 7751 .2 1 1 2 1/2 47t .2 1 17. 172 4.! .

* Multiple prorang levels at the three site are 16/818.
9 Multiple prormi/ng levels at the threg site are 2414/4..
TZ : Average no. of requests per trasauct on trnsact Ion esse).
DZ : Total umber of data iteal in the database (database size).
W .: __]__it irosrammi ng level. .
I/(leV) : _Percentage of transactions that are read-only.
10Cm : Ratio o¢ local d91ay to coancation delay

1ezcludin queue8 1 ela2..
N o. of Copy . Fraction of the databa residing at sites SI, 52, & 83.

2igure A.2 2RITI TB10JGE1UT: Short Transction•
;'-,." Loaded & Coimnncation Bound -- ,2 2 2 .6

502 1 1 12.. - * . . .752 1 1 1.2 1 . . " -2 1

* . . .-..

-112-

TZ-4, DZ-8192

UPIOR1 /n.of I pBasicIProry ICutrli Basic IBasic Basic IMltpl IBasic
+VSIO Comm 8182 'Is Basic IPraryliotal iPrarylCntri jlstuplVersa Ioptms I
2 52 .2 1 1 31 5.1 4.0 .26 .20 .20 .22

.2 1 1 1 .27 49 3.3
:2 . 1 1 1 .26 4.7 2.1 .26 .20 .20 .22
1 1 1. .

50a I I I A

5t 2 1 1 2.1251 2.12 2 272 2 2 J3 2 2 3 2.7 4.6 6.2 2.5 2.2 2.6 2.5

*2 1 112 3.6 4.6 7.2
S.2 2/3 2/3' 2/3 2.7 4.7 6.5

* 2 112 12 1I2 3.7 4.6 7.4
2 2 2/3 2/3 2/3 2.8 4.9 2.5 2.7 2.8 2.8

* 71 .2 1/2 1/2 1/2 3.8 4.7
*7% .5 2/3 2/3 2/3 6.3 2.6

* 75 .5 1/2 1/2 1/2 7.2 3.5
* 751 12 3 2 /3 2/3 6.3
* 751 1 1/21/2 1/2 7.3
. 5..5 2/32/323 2.6

50 .5 121 2 1/2 3.6
* 25Z ..2 3 3 273 2.7
* 251 .5 1/2 1 2 12 3.6
* 7 Z 2 2/32/3 3.4 3.2 3.4 3.3
* 75Z 1 2 142 1/2 4.1
* 501 2 2 213 213 3.5
* 50 2 1/21/2112 4.2
.* 20Z , 23 23 2/3 I3.6 3.4 3.5 3.5
* 29Z 2 1 22 4.2
* 25Z . 2 12 1/2 3.5
* 501 .2 12 1/12 2.8 .63
* 75Z .2 1 1 2 1 2.0 1.3
* 25Z .5 1 /2 1/2 4.0
* 501 .5 1 1/2 1/2 3.4
* 751 .5 12 1/2 2 2.5
* 251 1 1 1/2 1/2 4.4
* 501 1 1 2/12 3.7 1.9
* 75Z 1 1 121/2 3.2 2.7
* 25Z 2 1 1/2 1/2 4.9. * 501 2 1 1/212 4.6
* 75 2 1 1/21/2 4.3

501 .2 1 1/2 1/2 2.1 .40
751 .2 1 1/2 1/2 1.3 .5915 1 1 1/2 12 2.7 1.4

2 11/2 2 2 1
."* Z 1 2 1/2 10

5Z .2 1 1/2 1/2 .71 34
5u 1 1 1/2 1/2 1.8 1.2
751 1 1/2 1/2 1 1.5 1.2

MuIkltiple programing levels at the three site are 10 1111.
M Nultiple progrmuirg levels at the three site are 16/8ig.
m Multiple progrming levels at the three si;e are 24(14/4. ,

TZ : Average no. of requests per transaction trqnsaction ease).
DZ : Total number of data items in the database database size).
I : ltirograsmins level.
R/(R V) : ercentage of transactions that are read-only.
10/com : atio of local delay to cgummication delay
_. of- (ezcludinl queueing delay,.
go. of Cpy : Fraction of the datbanse residing at sites 81, 82, & 83.

Figure A.3 Average Response Per Read Request
Short Transactions & Communication Bound

*: -113-

TZ-4, DZ-8192

-PI/J(IIO / Ino. of OP)YIBasic [Prary lCntrl IBasic IBasic IBasic Iltpl IBsic J
-I+) ICom Si 182 183 Basic IPrmrylTotal IPrmryICntrl ITstmpIVersn I Optan I

* 25 .2 11 12 5.2 4.4 5.3 .2 .28 .29
* 502 .2 1 1 1 12 5.1 3.5
* 75Z .2 1 1 1 11 4.9 2.3 4.6 .2 .26 .26
* 75% 1 1 1 1 8.6 4.8 3.5

. * 75% .5 1 1 1 10 4.8 2.7 3.9
* 5M .5 1 1 1 4.9
* 25Z .5 1 1 1 5.2
* 752 2 1 1 1 4.5 2.0 2.2 2.1
* 50 2 1 1 1 4.9
* 25Z2 1 2 [5.3 2.0 2.2 2.1
* 75 . 2/3 2)3 2 8.3 4.8 6.3 4.9 2.2 2.7 2.6..2 27J 273 7j 1:.2

.2 273 273 /3 8.5 ,
752 .2 1/2 1Z2 72 6.2 4.7 7.4

-"* 7 Z .2 2D8 243 2.3
4 6.9

02I :2 1/2 1/2 1/2 6.5 4 7.6
* 25% . 2/3 2/3 2/3 8.4 5.0 5.0 2.7 2.9 2.9
* 252 .2 1/2 1/2 1/2 6.5 4.8* 752 .5 2/3 2/3 2/3 6.3 4.7
* 52 .5 1/2 1/2 1/2 7.5 4.8

* 75% 1 213 2/3 2/3 6.5
* 752 1 1/2 1/21/2 7.5

02* 502 2/3 2/3 2/3 4.9
*502 .5 1/2 1/2 1/2 5.0

*252 .5 1/2 1/2 1/2 4.9
* 752 2 2/32/3 2/3 4.9 3.2 3.6 3.5
* 752 2 1/2 1/2 1/2 4.9
* 502 2 2/3 2/3 2/3 5.1
* 50 2 12 1/2 1/-2 5.1
* 252 2 2/3 2/3 2/3 5.2 3.4 3.7 3.6
* 252 2 1/2 1/21/2 5.2
* 252 .2 1 12 1/2 4.0
* 502 .2 1 1 2 172 3.2 4.1
* 75Z .2 1/2 1/2 2.1 1.5

7* 25 .5 1 1/2 1/2 4.1
* 50Z .5 1 1/2 1/2 3.4

;'"* 75Z .5 1 12 1/2 I2.7 .-.
* 25Z 1 1 21/2 4.6
* 502 1 1 1/21/2 3.9 3.8
* 7J 1 1 1/21/2 3.4 2.1
* 25% 2 1 1/2 12 5.1 .'..
* 5M2 2 1 1/21/2 4.7
* 752 2 1 1/2 112 4.4
* 502 .2 1 1/2 112 2.1 2.9

752 .2 1 1/2 1/2 1.3 2.2
,,I 1 1 1/2 1/2 2.8 3.2

I :2
0 1 ..6 7

I -.': • ;I.,T,;; I ---Ih ;;- at;';;the . •i are 10/1 1.1.:.:-:
Nultpleprogrannming levels.t h three site aeI1111

.* bult pe prormming levels at the three atte are 1 /88.
uIltiple programing levels at the thref site are 244/4..

TZ : Average no. of requests per transaction ktransaction size).D . Total number Of data items in the database (database size).
" : hltiproring level.
1/ (.V) : ercentage of transactions that are read-only. a-
10Corn : atio of local delay to c anication delay

-ezcludin queueing delay).
4 .N No. of Copy : Fraction of the database residing at sites 81, 82, & 83.

Figure A.A Average Response Per Urite Request, Short
Trans&ctions & Comunication Bound

L .4 ,.. ., ,:.,,

-114-

TZ- 4, DZ- 8192

IMP lit Pt1 10 /Ino. of Ioy Ctri IBasicI
+4W)Coi Si 0102 1S3 Total I Pzmryl

32 75% .4/1/2 11/2 12 1./. ./.32 25Z .4/1/2 1 /212 93/2. .9/.8
32 7j% 2/1/2 1 1/2 1/2 ~.6/1.9 6.5/2.
32 25% 2/1 2 1 1/2 1/2 .91/2.7 .9.9

2 75Z .4/8 112 1/2 3.3/1. 13i 8/1.2
.225 4/18 1 12 1/2 .391. .. 12

32 75% *2/1/8 1 1/2 1/2 3 111.1 3.6/.2
32 25 2//8 1 21/Z2.701.2
32 75Z .4/1/2 213 2/3 2/3 2.6/.87
32 25% .4/12 2/3 2/3 2/3 .66/1.9
32 75% 2/1/2 2/3 2/3 2/3 2.6/.85
32 25% 2/1 2 2/3 2/3 2/3 .75/1.9
32 75% .4/1/8 2/3 2/3 2/3
Ut 25% .4/1/8 2/3 2/3 2/3
32 75% 2/1/8 2/3 2/3 2/3
32 25% 2/1/8 2/3 2/3 2/3
32 75% .4/1/2 11/2 1/2 2.9/3.1 1.9/3.5
32 25% .4/1/2 1 1/2 1/2 6.7/6.3 1.1/7.3
32 75% 2/1/2 1 1/2 1/2 4.0/4.1 3.5/3.6
32 25% 211 2 1 1/2 1/2 6.9/7.0 2.4/7.6
32 75% .4/1/8 1 1/2 1/2 5.9/5.3 4.3/16
32 25% .4/1/8 1 1/2 1/2 16/14 5.516.9
32 75% 2/1/8 1 1/2 1/2 6.8/-6.7
32 25% 2/1/8 1/2 1/2 14/14
32 75% .4/1/72 23 2/23 10/9
32 25% .4/1/2 2/3 2/3 2/3 11/12

32 75% 2/1/2 2/3 2/3 2/3 10/9
32 25% 2/1 2 2/3 2/3 2/3 11/12
32 75% .4/1/8 2/3 2/3 2/3
32 25% .4/1/8 2/3 2/3 2/3 -

32 75% 2/1/8 2/3 2/3 2/3
32 25% 2/1/8 2/3 2/3 2/3

TZ - Average number of request: per transaction (transaction size.
DZ - Total number of data item in the database (database sizeJ.
MP - iltirogramming level.
R/ (R.W - Percentage qf transactions that are rea4-,nly.
10/Comm - local delay/me.ss comnication delay/data communication delay
no. of copy - Fraction of the database residing at each site.

Figure A*5 Through-Put fhead/Write): Short Transactions
8Comuncation Bound

-115-
TZ3n4, IN32, Mw.192.

PIL I 19a- beu I ftelo I P= I CUM I]BaLe I LIm.* I Basic I LatPl IL, O i ":'sPrI r Iotp I rerani

A 1V4/2. ./. / .5/ 1.8/5.4 1.9/5.6 1.8/5.6.SO .I 1 I 9./2.9 i.2/3.; ./.
6I/ 8.6/2.9 G.1/2.7 8.1/2.7• I . 1I.I/. .63/ .0/ 62.

1 12.2/1 2.1/.00 2.3/.39 355/1.0

02 211
. 2 1 1 1 . .91.3/.. .2 I .140.-6a I 2 I II ,. 21/.59 .21/ 59 .22/.60

2 2 1 1.5/4.1.2

• . .2 2/ 1.I/5/7 1.2/. 7/4.9 2.0/6.0 2.0/5.9

5 5 .2 2/ 2/ 2/ T. 2/.125•/.77/2.6

2/ 2/2 2/ 3. /1. 1
2 2/ .t.5 1.6 i66/2.0 .66/2.0
2 2/ 2/ . I 1 . / .

1 T S213 213 21 I ./:11 2.410 2.2/.72 2718:

• 21 2/ 21:1111 .2 121/2 12I141. 1. 1.1/39 3. '/4 2
' .2/ 2/ i !/:;2 |.12.292/ 2. /:91.

.2 1/2 1/2 1/2 . 4.6/1.5 6

.2 1/12 1/2 4.6/1,511/2 12 1/2 0 .712.1 . 6
.0 .5 1/2 1/2 1-4/1.4 1.51

_.75 .5 1/2 1/2 1/2 2.5/.6 2.1/.61 2: /.16
• .Z5 1 1/2 1/2 1/2 1.32/ .34/1. .16/Il

1 .0 1/2 1/2 1/2 .72/. 1 .50/.42 .1/1
6 1 1/2 112 1/2 1.2/.13 1-3/12 1.4/. 7

.2 1 1/2 1/2 1.2/3.7 ."/2 A
@50.2 1 1/2 1/2 2 3 7 .:2.

.2 1 1/2 1/2 4./1.4 5.5/1.9
• .S .5 1 1/2 1/2

1/ 1 / i
6.1 1 1/2 1/2 2./.

* .?1 1 1/2 1/2

* ,0.,2 1 1/2 1/2 I ,/, 2.5/2.7,$2 1/ 12 1/2 4,01.3 52/1,
5 1 1/2 1/2 4.4 .62/.603 .22/2.2.2 1 12 1/2 4 /1 1.1.3

1 1/2 1/2 ON,
. .5:2 1 1U2 1/2 2. 2.41..1.

f S 1 1 1/2 1/2 4 .1 / .44.J / .)
5 Y 1 1 1/2 1/2 A T/.25 .8/.26

Multiple praing levels at the three site are 1011111.
P Pro raming levels at the three site are 1 l4P.

WU tiplevrogarain levels at the three site are 24/4/4.

OW local easi:g is slmlated.
o ns o1 lkcal processing delay are simlated:
Mssap l eprocesaas delay a.d daT4 PPee9sn delay.

I average round atp oo unia 10on Is eoat I.:ue amie *Moessing ela Is fixe at 4 of the
5% D of' Sepwd crpe~ ation el~;. . .

Ratio of data peeoa a_ leeaaoeW JlThe 01:182e apr ocessi dla i
ratio toei elayto round "rie ratio a lay is en oinclum 'Io/Cem' -" -

alotiomn:
-.. • vrN tbre'rqet rr trametien (tanmtbon mse).'.-1

,.--. V,, • ergetag e1' tralaetins that are read*<o.' -''-I. /C u Rtitto of le o' dat o..o j dla t oncto

Vtaboos , queue 18 on 6t tab ae reeidio at eaCh site.

no" A.--- .. -- .
, : - ---:.:- -...:..* % - :.. .-- . - .. -.-v . -. : :, : . - . - - -" . . .

. , '..%°% ," %' " .. % %.-. % -" . . +, .-- -.. -. *- - - ...-.. .,....-..-. "..". .. "

-116-

TZ1, We 32, 1u 8192
INR /VIO/Databas. Ilasicltrlnlaiasiclaillpl

ICow Copies 1 Diiiy &l~ I T ral.s ntrll a~rn~a a

.2 .2 1tI 1 .05 5/. 2.3/5.5 3.0/3.0 3.14/3.5 3.14/3.5
* . 2 1 1 . 11.O/ .

I 1 .0/1 .1/12 5,/12

11 /24 1124
__ •I I 11 11/241 20/20 11/2/3e_. 2 1 1 1 5/ 1 27/27 33/33 33/33 'O

0 2 1 1 1 0
* .2/2 1 1 1 2Qj61 22/22 29/29 29/29
"5.2 2/ 2/ 2/3 .8/6.0 3.2/1.9 3.7/3.6 2.9/3.3 3.4/3.5-"-"" • . 0 .2 2/ 2/2/ •/. J./.5"' . 2/, 2/-.2/.

2/3 3 .1..2/ 3.0/3.0 2.1/2.7 3.2/3.4
5 .2 2/ 2/ 2/ .1/ .2

.2/2/ 2/ 7-1/7.30.5 .5 2/ 2/ 2/ ./15 11/11 .1/11
* .50 .1 2/ 2/ 2/ 1./15 10/10: -• .75 .5 2/ 2/ 2/ 8.11/11 9.8/9.9 11/12
0 .25 1 2/ 2/ 2/ 18/21 1122;--0, .1•0 1 2/ 2/ / 128 /22

_. I 21 213 3/1 26/28 30/0

o'751 2/ 2/ 2/ 2 20/21 29/29
S .25 .21/1 1/1 1/1 11./5.11 1.2/11.5

1/ .2 1 12/2 .15.2 .2/14.4-
% .2 1/2 1/2 1/2 .7/5.1 1.1/11.3 5.5/5.7

, 2 1/2 1/2 1/2 9.2/12 9/10 7.11/10
S. . 1/21/21/2 /12 21/ 7.5/10
S5 11/2 1/212 /11 .4/ T.611

, : 1 1 1/2 1/2 13/24 /20 1 0
,' .1 1 2 1/2 1/2 15/2 /11 /200- : . .5 1 1/2 1/2 112 17/1 111 15/21

0 .25 .2 1 1/2 1/2 6-0/6.1ee .2 1 1/2 1/2
4 .2 1 1/2 1/2 .j16. .
_ .5 1 1/2 1/2 13/14

0 .5 1 1/2'1/25 1/2 1/2
9 i 1 1/2 1/2 T11
0 1 1 1/2 12 2 t 1/1111
. 1 12 1 2 lvr s r 111/.

lI 2 1 12 1/2 /.16, .1.
| 11 1/2 1/2 28/26111
IP 1 1 1/2 1/2 271' 1712."'

2 1 1 2 1 2 .O '. . 4 .1..."
j 2 1 1/2 1/2 1.1 .850/ 3,.

• 1 1 1/2 1/2 23214"-
0 1 1 1 1/2 1/2 11123/L

0ssue iosloa pro ceamm ing s ithe resie.e10 /1
tNultuple programming levels at the three sito are I688
N ultf .pirogipmmrj levels at the three iLto are A4/.

Vo kn% of local processing delay are simtulated:mssage processi i dla nud data ing delay.
The average round tarp omm.unicaton .5 fixed I
The m s procssing dela l• fixed at 55 of theO , ..)3 o Tund t porun.oaonO,8 •

5% of ro'dtrip om cton delay
10to of data processing & wmmage ciesui delay is 10

The ratio of data uocessi fdolLy t ruao 1"D
..-- omucation Calay Is ovn in oolrm 0C/Lu.

Notation:
TZ a Average nmber of requests per transotion (transaction site).

number of date itmis in the database (database sie).
-r, ta"WaTHS that are read-only.

J"/C=. Jlatio of local data processing delay to ocmunioatlon
delay (excluding queuei g.

"" tbaae Copies a traction 6f theldatabsee reiding at each ate.
*:'i,: PFIm-re A.7 Average lepouo Time (Reed/Vrite):

Sbmt fTranotUtion & s0 Sound

• * .""+ " ". ". """ * . . . "" ".' " •" i "

S..a.+A
*..~~

*

-117-

TZ816, =88192, NJt32

-'.'.M"IR/WlIO/IDataba" m a Basoi c~ Nlltpl faI t c
i~o I c~ opies I ISU Wla era I Opta I .e0

2 .2 1 1 1 ./6.0 1.5/A. ,9 /.20 ,5/1."
* • .2 1 1 97.23 O -17/2 12. 12",•• 2 1 1 1 2 i I. . N /.2 .6 / oil" /2

,l.l,2 . ,. .0,. 1 .2.2::
-* .T5 2 2/32/3 2 ! A:/.33 .68/. 1./. 1./37*.52 2/ 2/ 2/ s.6 91/* .i3,.

: Multiple rogramming levels at the three site are 10(11/U 1Ratio of local data processing & message processing dealy i 10a
Assumption:

Ue1.eln f local proc:esing I5 simulated.
vo k, of at l, processing are simulated:
T (mesasge and data prooessing).
Tb. round trip communication is fized at I
The local message processin day Isa fized at

.%, 5% of the round trip comuncation delay
The ratio of local dtarossi del to round tip

communication delay La shown in ol01e 10/Cn.

Notation:
T a Average number of requests per transaction.
DZ a Total number of data items in the database.
M? a Multiple proramming level.
N/W a Ratio of read-only to vrite transactions.
10/Co. a Ratio of local data processing delay to

oat bas cat lon a eiaz Joxcluding queue ng).•-'"Database Copies a Fraction o a n databiso at eaW site.

Figure A.8 Troug-lut (Reoad/rite): Long
Transaction Loaded & 10 Bound

* . ".

• . o .

. -

.'.

-.% " *..°.

.4.

-118-

TZ-16,DZ-8192 ,MP-32 S

MP1R/WjIOIaabs Basic IBasic Mlp *Bai
COIopi Pruryl Tstmp Veren IlOptus-

* .25 .2 1 1 1 2.8/4.6 2.2/2.2 1.1/2.7 2.1/2.6
* .75 .2 1 1 1 1.9/5.5 2.2/2.2 1.6/2.8 1M7/3
* .25 2 1 1 1 20./33 22./22 13125 19/24
* .75 2 1 1 1 142 21/21 19-126 21/27 .
* .25 .2 2/3 2/3 2/3 3.3/4.8 3.0/3.0 1.4/2.6 2.3/2.9
* .75 .2 2/3 2/3 2/3 2.4/5.6 2.9/2.9 1.9/2.6 2.0/3.4
* .25 1 2/3 2/3 2/3 25./33 29/29 14/19 18/21
* .75 1 2/3 2/3 2/3 22./42 28128 16/20 18/25

* Multiple programming levels at the three site are 10(11,/11.
Ratio, of local data processing & message processing delay is 10

Assumption:
?ueueng for local processing is simulated.
vokins of local processing Lre simulated:

message and data processing). f a 1
The round trip comnication is xed at I
The local message processing delay is fixed at

5% of the round trip communication delay
The ratio of local data processing delay to round trip

communication delay is shown in colume "IO/Comm"

Notation:
TZ - Average number of requests per transaction.
DZ - Total number of data items in the database.
Nl - Multiple programming level.
R/ Ratio of read-only to vrite transactions.
IO/Com - Ratio of local data processing delay to

communication delay (excluding queueing).
Database Copies - Fraction of the database at each site.

Figure A.9 Average Response Time: Long
Transaction Loaded & 10 Bound

%:-.. ,

4--.

,,,,

..,• 4

.., ," , -%,, " ,.. .,..,, .-4-. . -4 .-4, ,V
4

" " ,", -. .,.... ,... """."- ."" . ''- '-. _.-4,..-... " ".".

-119-

TZ-16,DZ-8192 ,]N-32

I Com icopies IPzmry I Tstmp I Veran IOptms
* .25 .2 1 1 1 2.4/7.3 9/26 3.6/8.6 4 310
: 75 .2 1 1 1 21 16.5 6419 38/11 1.0/12

* .25 2 1 1 1 1.2/3.5 1.0/2.8 .42/.98 .46/1.3
*75 2 1 1 1 5.4/1.8 8.0/2.2 10/2.6 6.271.9

* .25 .2 2/3 2/3 2/3 2.2/6.5 1.6/4.4 .97/2.7 1.9/5.1
* .75 .2 2/3 2/3 2/3 9.9/3.2 7 912.4 7.5Z2.8 10/3
* .25 2 2/3 2/3 2/3 1:0/2:9 .14/2.4 .54/1.5 .6672.0
* .75 2 2/3 2/3 2/3 4.7/1.5 4.071.3 5.6/1.7 4.8/1.3

* Multiple programming levels at the three site are 10/11111.

Assumption:
queueing for communication channel is simulated.
Only one kind of local process in iLs simulated.
The average round trip communication is fixed at I
The ratiof local data processing delay to souqd trj

communication delay is honin co lume 101Cm

Notat ion:
TZ = Average number of requ4ests per transaction.
DZ - Total nmer of data items in the database.
14P - Multiple programming level.
INW - Ratio of read-only to write transactions.
101Com - Ratio ojf local processing delay to commnication

delay (excludin quuIg delay).
Database Copies - Fraction of the database at each site.

Figure A.10 Through-Nut (Read/Write): Long Transaction
Loaded &Communicaton Bound

INPIR/WIIO/ IDatabase IB asic I Basic I Mltpl IBasic
1 Com Copies I Prury T Tutp IVersn I Optms

* .25 .2 1 1 1 1 2/4.1 .2/ 2 .2/.53 .42/.5
* .75 .2 1 1 1 .52/3.1 .27.2 .27.45 .307.50
* .25 2 1 1 1 3.9/7.8 2/2 2/4.9 3.5/4.6
* .75 2 1 , 1 318.8 2/2 2/3.1 2.8/4.3
* 2.2 2/3 2)3 2/3 2.5/4.2 2/2 .6/37 2.2/2.8
* .75 .2 2/3 2/3 2/3 2J14.2 1.3 .9 1M43.3 1.9/3.1
* .25 1 2/3 2/3 2/3 6.3/8.9 313.2 3.0/7.8 5.6/6.7
* .75 1 2/3 2/3 2/3 4.28.5 3.2/3 .1 3.1/5.7 4.2/6.6

* Multiple programming levels at the three site are 10/11i11.
Assumption:
Qeueing for communication channel is simulated.
Onyone kind of local process ing is simulated.

The averagef round trip communication in fixed at I*
The ratio oflocal data processing delay to jouqd ti

communication delay is shown in col 1n II0C omm

Notat ion:
TZ - Average number of requests per transaction.
DZ - Total number of dqta it=@s in the database.
NP - Multiple programing level.
11w - Ratio of read-only to write transactions.
10/Cmn - Ratio of local processing delay to communication

delay (excluding queueing delay).
Database Copies - Fraction of the database at each site.

Figure A.11 Average Respogse Time (Read/Write)
Long Transaction 4 Communication Bound

MISSION
Of

Rome Air Development Center
RADC ptn. a-nd executes3 'eA ewtch, devetopment, teAt and
6.etected acqui~ition p'Log'tam,6 in zuippo~t o6 Command, Contkot
Comnincatioyn and Intellig~ence (C3 1) activitiez. Techgicat

- ~~~and engi~neeting suppourt within ateau o6 tecIrnicat compe.tenc~e
(z p'tovided .to ESI) Pt'cg~am oj~ice (POz) and otheA ESV4, ~ ~ eement6. The ptina.Zpat technicate miz.6on wtea& oA-e
conmun~caions, etec4'Lomagne.tic guidance and contLot, auW%-
veiZtance o6 q'tound and aePJLo,5pacc object6, intettigence datag
coUecticn and ha-ndtin&g, in~o,'nation .6y.tem teehnoeogy,
iono.6phe,'Zc p'Lopagation, &6otid sta-te 6cieneh, lr.c.Aounive.
phyqsc6 and etectwnZc tetiabZitt, maintainabiLtt and

*compatibitity.

* _j,

F4 'ci

fC ",*-i -, , .?. 4 f
l -i I'l . * . -gi . .V ? 9'b

4 7.4 ~.4~2 ;i- t 4 ry$< .

t X4

-at,"~vts

Ilk *t 1 7 g .. .)t .a- ,

7K A -k ~ 4

~ ~- $A~t% 4 4 11 f,"4rt~ 4.
14 74 ' . '

J, or~

S 01

'kr-.4~~l * Jr'A ~ 1 2 4

tt,.

-~~

it 'f

ANN . I

'(*' 1* 4.. A t

